Existence of Local Solutions to a Free Boundary Problem for Incompressible Viscous Magnetohydrodynamics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Piotr Kacprzyk, Wojciech M. Zaja̧czkowski
{"title":"Existence of Local Solutions to a Free Boundary Problem for Incompressible Viscous Magnetohydrodynamics","authors":"Piotr Kacprzyk,&nbsp;Wojciech M. Zaja̧czkowski","doi":"10.1007/s00021-024-00879-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the motion of an incompressible magnetohydrodynamics with resistivity in a domain bounded by a free surface which is coupled through the free surface with an electromagnetic field generated by a magnetic field prescribed on an exterior fixed boundary. On the free surface, transmission conditions for the electromagnetic field are imposed. As transmission condition we assume jumps of tangent components of magnetic and electric fields on the free surface. We prove local existence of solutions such that velocity and magnetic fields belong to <span>\\(H^{2+\\alpha ,1+\\alpha /2}\\)</span>, <span>\\(\\alpha &gt;5/8\\)</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00879-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00879-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the motion of an incompressible magnetohydrodynamics with resistivity in a domain bounded by a free surface which is coupled through the free surface with an electromagnetic field generated by a magnetic field prescribed on an exterior fixed boundary. On the free surface, transmission conditions for the electromagnetic field are imposed. As transmission condition we assume jumps of tangent components of magnetic and electric fields on the free surface. We prove local existence of solutions such that velocity and magnetic fields belong to \(H^{2+\alpha ,1+\alpha /2}\), \(\alpha >5/8\).

Abstract Image

不可压缩粘性磁流体力学自由边界问题局部解的存在性
我们考虑了不可压缩磁流体力学在自由表面所限定的域中的运动,该域通过自由表面与外部固定边界上规定的磁场所产生的电磁场耦合。在自由表面上,施加了电磁场的传输条件。作为传输条件,我们假设磁场和电场的切线分量在自由表面上跳跃。我们证明了解的局部存在性,即速度场和磁场属于(H^{2+\alpha ,1+\alpha /2}\)、(\alpha >5/8\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信