Optimal Design Study of Vibro-Acoustic Resistance of Porous Foam Composite Laminates

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Haiyang Zhang, Zelin Li, Yichen Deng, Hui Li, Hang Cao, Xiangping Wang
{"title":"Optimal Design Study of Vibro-Acoustic Resistance of Porous Foam Composite Laminates","authors":"Haiyang Zhang, Zelin Li, Yichen Deng, Hui Li, Hang Cao, Xiangping Wang","doi":"10.1007/s10443-024-10241-0","DOIUrl":null,"url":null,"abstract":"<p>Optimal design study of vibro-acoustic resistance of porous foam composite laminates (PFCLs) is presented in this paper. A dynamic model of the PFCLs subjected to the plane acoustic excitation load is firstly proposed with consideration of upper and lower composite skins and a uniform porous foam. The vibration and acoustic solutions of the PFCLs with acoustic energy excitation are further acquired using the first-order shear deformation theory, the finite element method, the Rayleigh integral approach, the mode superposition technique, etc. Subsequently, a vibro-acoustic optimization model is established by accounting for appropriate design variables and constraints, in which resonance responses, sound transmission losses, and overall structural mass are taken as objective functions, respectively, and the artificial immune clonal selection algorithm is adopted to improve the efficiency in the optimization calculations. After such an algorithm and the current model are thoroughly validated, single-objective, dual-objective, and multi-objective optimizations are undertaken on the PFCLs to achieve the optimal design parameters. The research results indicate that it is hard to enhance the vibro-acoustic resistance and lightweight property of the PFCLs simultaneously, which means some compromise results of design parameters need to be chosen. It is suggested to determine the concerned optimal design results by referring to the nearby turning points associated with the Pareto-optimal solutions.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10241-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal design study of vibro-acoustic resistance of porous foam composite laminates (PFCLs) is presented in this paper. A dynamic model of the PFCLs subjected to the plane acoustic excitation load is firstly proposed with consideration of upper and lower composite skins and a uniform porous foam. The vibration and acoustic solutions of the PFCLs with acoustic energy excitation are further acquired using the first-order shear deformation theory, the finite element method, the Rayleigh integral approach, the mode superposition technique, etc. Subsequently, a vibro-acoustic optimization model is established by accounting for appropriate design variables and constraints, in which resonance responses, sound transmission losses, and overall structural mass are taken as objective functions, respectively, and the artificial immune clonal selection algorithm is adopted to improve the efficiency in the optimization calculations. After such an algorithm and the current model are thoroughly validated, single-objective, dual-objective, and multi-objective optimizations are undertaken on the PFCLs to achieve the optimal design parameters. The research results indicate that it is hard to enhance the vibro-acoustic resistance and lightweight property of the PFCLs simultaneously, which means some compromise results of design parameters need to be chosen. It is suggested to determine the concerned optimal design results by referring to the nearby turning points associated with the Pareto-optimal solutions.

Abstract Image

多孔泡沫复合层压板抗振声性能的优化设计研究
本文对多孔泡沫复合材料层压板(PFCL)的抗振声性能进行了优化设计研究。首先提出了 PFCL 在平面声激励载荷作用下的动态模型,并考虑了上下复合材料表皮和均匀的多孔泡沫。利用一阶剪切变形理论、有限元法、瑞利积分法、模态叠加技术等,进一步获得了声能激励下 PFCL 的振动和声学解。随后,通过考虑适当的设计变量和约束条件,建立了振动声学优化模型,分别将共振响应、传声损失和整体结构质量作为目标函数,并采用人工免疫克隆选择算法来提高优化计算的效率。在对该算法和当前模型进行充分验证后,对 PFCL 进行了单目标、双目标和多目标优化,以实现最优设计参数。研究结果表明,很难同时提高 PFCL 的抗振性和轻质特性,这意味着需要选择一些折中的设计参数。建议参考与帕累托最优解相关的临近转折点来确定相关的最优设计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信