Jeremy M. Testa, Wei Liu, Walter R. Boynton, Denise Breitburg, Carl Friedrichs, Ming Li, David Parrish, T. Mark Trice, Damian C. Brady
{"title":"Physical and Biological Controls on Short-Term Variations in Dissolved Oxygen in Shallow Waters of a Large Temperate Estuary","authors":"Jeremy M. Testa, Wei Liu, Walter R. Boynton, Denise Breitburg, Carl Friedrichs, Ming Li, David Parrish, T. Mark Trice, Damian C. Brady","doi":"10.1007/s12237-024-01372-5","DOIUrl":null,"url":null,"abstract":"<p>Hypoxia in coastal waters is a pressing ecological problem caused by continued eutrophication and climatic change that has widespread consequences for metazoan life and biogeochemical cycles. Numerous studies have investigated the controls on seasonal hypoxia formation and persistence in many of the world’s large estuaries and coastal hypoxic zones, but far fewer studies have examined the controls on short-term oxygen variability that leads to diel-cycling hypoxia in shallow-water environments. We utilized a unique, comprehensive (181 stations) record of dissolved oxygen concentrations collected at shallow water sites (primarily < 2 m) at high frequency (15 min) throughout the estuarine complex of the Chesapeake Bay and its tributaries to quantify how internal and external variables co-varied with dissolved oxygen. We used a combination of time-series analysis, harmonic analysis, and machine learning (e.g., classification and regression trees (CART)) approaches to identify spatial patterns in major controls on oxygen variability and the duration of moderate hypoxia. We found that key controls on oxygen variability varied substantially over space. For example, photosynthetically active radiation (PAR) was a strong predictor of oxygen dynamics in the majority of mesohaline waters. In more fetch-exposed stations, wind strongly controlled hypoxic duration, but in eutrophic, inshore locations, chlorophyll <i>a</i>, or turbidity were often better predictors. Specifically, diel oxygen variability was muted in upstream regions characterized by high turbidity. The duration of low oxygen conditions, which we defined conservatively as less than 4.8 mg O<sub>2</sub> L<sup>−1</sup> (156 µM), was strongly controlled by temperature, and simple projections of regional warming and CART-derived oxygen thresholds suggest that the Bay could experience a 10% increase in this type of hypoxia duration by mid-to-late twenty-first century. The ratio of tidal to biological variability in oxygen was found to increase under conditions of higher turbidity, stronger wind, and lower salinity, but biological variability was typically a factor of two higher than tidal variability. Although chlorophyll-a generated high oxygen concentrations at some locations, those stations with exceptionally high chlorophyll a (> 30 µg L<sup>−1</sup>) were the most vulnerable to hypoxia. Because conventional water quality modeling frameworks are designed to capture hypoxia on relatively long time scales, these new insights can help inform updated oxygen models to support the management of shallow-water estuaries in the face of managed nutrient reductions and climate change.\n</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuaries and Coasts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12237-024-01372-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia in coastal waters is a pressing ecological problem caused by continued eutrophication and climatic change that has widespread consequences for metazoan life and biogeochemical cycles. Numerous studies have investigated the controls on seasonal hypoxia formation and persistence in many of the world’s large estuaries and coastal hypoxic zones, but far fewer studies have examined the controls on short-term oxygen variability that leads to diel-cycling hypoxia in shallow-water environments. We utilized a unique, comprehensive (181 stations) record of dissolved oxygen concentrations collected at shallow water sites (primarily < 2 m) at high frequency (15 min) throughout the estuarine complex of the Chesapeake Bay and its tributaries to quantify how internal and external variables co-varied with dissolved oxygen. We used a combination of time-series analysis, harmonic analysis, and machine learning (e.g., classification and regression trees (CART)) approaches to identify spatial patterns in major controls on oxygen variability and the duration of moderate hypoxia. We found that key controls on oxygen variability varied substantially over space. For example, photosynthetically active radiation (PAR) was a strong predictor of oxygen dynamics in the majority of mesohaline waters. In more fetch-exposed stations, wind strongly controlled hypoxic duration, but in eutrophic, inshore locations, chlorophyll a, or turbidity were often better predictors. Specifically, diel oxygen variability was muted in upstream regions characterized by high turbidity. The duration of low oxygen conditions, which we defined conservatively as less than 4.8 mg O2 L−1 (156 µM), was strongly controlled by temperature, and simple projections of regional warming and CART-derived oxygen thresholds suggest that the Bay could experience a 10% increase in this type of hypoxia duration by mid-to-late twenty-first century. The ratio of tidal to biological variability in oxygen was found to increase under conditions of higher turbidity, stronger wind, and lower salinity, but biological variability was typically a factor of two higher than tidal variability. Although chlorophyll-a generated high oxygen concentrations at some locations, those stations with exceptionally high chlorophyll a (> 30 µg L−1) were the most vulnerable to hypoxia. Because conventional water quality modeling frameworks are designed to capture hypoxia on relatively long time scales, these new insights can help inform updated oxygen models to support the management of shallow-water estuaries in the face of managed nutrient reductions and climate change.
期刊介绍:
Estuaries and Coasts is the journal of the Coastal and Estuarine Research Federation (CERF). Begun in 1977 as Chesapeake Science, the journal has gradually expanded its scope and circulation. Today, the journal publishes scholarly manuscripts on estuarine and near coastal ecosystems at the interface between the land and the sea where there are tidal fluctuations or sea water is diluted by fresh water. The interface is broadly defined to include estuaries and nearshore coastal waters including lagoons, wetlands, tidal fresh water, shores and beaches, but not the continental shelf. The journal covers research on physical, chemical, geological or biological processes, as well as applications to management of estuaries and coasts. The journal publishes original research findings, reviews and perspectives, techniques, comments, and management applications. Estuaries and Coasts will consider properly carried out studies that present inconclusive findings or document a failed replication of previously published work. Submissions that are primarily descriptive, strongly place-based, or only report on development of models or new methods without detailing their applications fall outside the scope of the journal.