Performance and Microstructural Features of Sodium Silicate Shell Cured via Microfluidic Droplets of Citric Acid Solution

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Yujie Yuan, Chang Liu, Zhijun Chen, Zhongxing Tian, Xiangdong Liu
{"title":"Performance and Microstructural Features of Sodium Silicate Shell Cured via Microfluidic Droplets of Citric Acid Solution","authors":"Yujie Yuan, Chang Liu, Zhijun Chen, Zhongxing Tian, Xiangdong Liu","doi":"10.1007/s40962-024-01394-6","DOIUrl":null,"url":null,"abstract":"<p>The large solid waste discharge of investment casting shells is closely related to its unstable performance of shells and uncontrolled curing reaction. The unique advantage of microfluidic technology is that it can effectively control the chemical reaction process. In the present work, an environmentally friendly citric acid widely used in food as hardening agent was employed to cure a sodium silicate shells. Droplets of citric acid solution with a concentration of 1.5 × 10<sup>−3</sup> mol/L were generated by microfluidic technology and spread on the surfaces of shell specimens driven by air flow to induce the shell hardening. The green-, fired-, residual-strength, high temperature self-weight deformation, and gas to permeability of the shell were investigated. The results showed that the peak strength reached 30.38 MPa for green shell and 10.61MPa for the fired shell, about 26.4% and 17.4% higher than the immersion method, respectively. The fracture morphology of the shell observed by SEM (Scanning Electron Microscopy) confirmed that the more uniform, and far less cracks and micropores formed on the sodium silicate film of shells hardened by microfluidic droplets than the dipping method. The analysis of FTIR (Fourier Transform Infrared Spectroscopy) reveals that the final products of sodium silicate gel cured by microfluidic droplets achieved a high degree of polymerization and generated a relatively dense Si–O–Si cellular structure. The phase composition and thermal stability of the shell were analyzed by XRD (X-ray Diffraction) and TG-DSC (Thermogravimetric Differential Scanning Calorimetry). The results demonstrate that the improvement in hardening performance of shells is due to reaction microfluidic technology that can precisely control the volume and rate of hardening agent droplets, which can improve the repeatability and stability of the reaction in a short time, as well as reduce the damage of the gel film during the hardening process, and improve the quality of the gel film. The resulting shell can achieve higher strength and stability.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"177 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01394-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The large solid waste discharge of investment casting shells is closely related to its unstable performance of shells and uncontrolled curing reaction. The unique advantage of microfluidic technology is that it can effectively control the chemical reaction process. In the present work, an environmentally friendly citric acid widely used in food as hardening agent was employed to cure a sodium silicate shells. Droplets of citric acid solution with a concentration of 1.5 × 10−3 mol/L were generated by microfluidic technology and spread on the surfaces of shell specimens driven by air flow to induce the shell hardening. The green-, fired-, residual-strength, high temperature self-weight deformation, and gas to permeability of the shell were investigated. The results showed that the peak strength reached 30.38 MPa for green shell and 10.61MPa for the fired shell, about 26.4% and 17.4% higher than the immersion method, respectively. The fracture morphology of the shell observed by SEM (Scanning Electron Microscopy) confirmed that the more uniform, and far less cracks and micropores formed on the sodium silicate film of shells hardened by microfluidic droplets than the dipping method. The analysis of FTIR (Fourier Transform Infrared Spectroscopy) reveals that the final products of sodium silicate gel cured by microfluidic droplets achieved a high degree of polymerization and generated a relatively dense Si–O–Si cellular structure. The phase composition and thermal stability of the shell were analyzed by XRD (X-ray Diffraction) and TG-DSC (Thermogravimetric Differential Scanning Calorimetry). The results demonstrate that the improvement in hardening performance of shells is due to reaction microfluidic technology that can precisely control the volume and rate of hardening agent droplets, which can improve the repeatability and stability of the reaction in a short time, as well as reduce the damage of the gel film during the hardening process, and improve the quality of the gel film. The resulting shell can achieve higher strength and stability.

Abstract Image

通过柠檬酸溶液微流滴固化硅酸钠外壳的性能和微结构特征
熔模铸造型壳固体废物排放量大,与其型壳性能不稳定、固化反应不可控密切相关。微流控技术的独特优势在于可以有效控制化学反应过程。在本研究中,采用了一种广泛应用于食品中的环保型柠檬酸作为固化剂来固化硅酸钠铸壳。利用微流体技术生成浓度为 1.5 × 10-3 mol/L 的柠檬酸溶液液滴,并在气流的驱动下将其扩散到外壳试样表面,从而诱导外壳硬化。研究了壳体的生坯强度、烧成强度、残余强度、高温自重变形和气体渗透性。结果表明,绿壳的峰值强度达到 30.38 兆帕,烧成壳的峰值强度达到 10.61 兆帕,分别比浸泡法提高了约 26.4% 和 17.4%。扫描电子显微镜(SEM)观察到的贝壳断裂形态证实,微流液滴法硬化的贝壳硅酸钠膜上形成的裂纹和微孔比浸渍法更均匀、更少。傅立叶变换红外光谱(FTIR)分析表明,微流液滴固化硅酸钠凝胶的最终产品实现了高度聚合,并生成了相对致密的 Si-O-Si 蜂窝结构。通过 XRD(X 射线衍射)和 TG-DSC(热重差示扫描量热法)分析了外壳的相组成和热稳定性。结果表明,贝壳硬化性能的提高得益于反应微流控技术,该技术可以精确控制淬火剂液滴的体积和速率,从而在短时间内提高反应的重复性和稳定性,并减少硬化过程中对凝胶膜的破坏,提高凝胶膜的质量。由此产生的外壳可以达到更高的强度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信