Evidence for suboceanic small-scale convection from a “garnet”-bearing lherzolite xenolith from Aitutaki Island, Cook Islands

IF 3.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Norikatsu Akizawa, Kazuhito Ozawa, Tetsu Kogiso, Akira Ishikawa, Akira Miyake, Yohei Igami, Simon R. Wallis, Takayoshi Nagaya, Chihiro Ohshima, Ryo Fujita, Tatsuhiko Kawamoto, Akihiro Tamura, Tomoaki Morishita, Shoji Arai, Atsushi Yasumoto
{"title":"Evidence for suboceanic small-scale convection from a “garnet”-bearing lherzolite xenolith from Aitutaki Island, Cook Islands","authors":"Norikatsu Akizawa, Kazuhito Ozawa, Tetsu Kogiso, Akira Ishikawa, Akira Miyake, Yohei Igami, Simon R. Wallis, Takayoshi Nagaya, Chihiro Ohshima, Ryo Fujita, Tatsuhiko Kawamoto, Akihiro Tamura, Tomoaki Morishita, Shoji Arai, Atsushi Yasumoto","doi":"10.1186/s40645-024-00643-w","DOIUrl":null,"url":null,"abstract":"<p>Garnet peridotite xenoliths have been rarely reported from suboceanic mantle. Petrographic and geochemical characteristics of garnet-bearing oceanic peridotite xenoliths provide precious information on dynamics of the suboceanic lithosphere and asthenosphere interaction. We examined a lherzolite xenolith included in olivine nephelinite lava from Aitutaki Island, a member of the Cook-Austral volcanic chain. The lherzolite xenolith contains reddish fine-grained (&lt; 5 µm in size) mineral aggregates (FMAs) with size range of 0.5–6 mm, consisting of olivine, calcic and sodic plagioclases, aluminous spinel, native iron, and nepheline. Microstructural observations and chemical data corroborate that the FMA is a decomposed pyrope-rich garnet including chromian spinel grains with an irregular highly indented morphology in the center. The FMA is surrounded by pyroxene-poor and olivine-rich aureole. The spatial and morphological relationships of FMA and chromian spinel with pyroxene-depleted margin suggest a reaction of aluminous spinel + pyroxenes → pyrope-rich garnet + olivine, which requires a compression before decomposition of the garnet to FMA. An orthopyroxene grain shows slight but clear chemical zoning characterized by increase in Al, Ca, and Cr from the grain center to the rim. The zoning patterns of Al and Ca in the orthopyroxene grain can be modeled by diffusion-controlled solid-state reactions induced by pressure and temperature changes, keeping surface concentrations in equilibrium with the other coexisting mineral phases. The results indicate that the mantle, from which the lherzolite xenolith was derived, underwent isothermal decompression followed by a weak heating on a time scale of a few tenths of million years before the xenolith extraction. From the deduced compression and decompression histories, we hypothesize that the mantle beneath Aitutaki Island was once dragged down to a garnet-stable deep mantle region and brought up later by small-scale sublithospheric convection.</p>\n","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"37 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Earth and Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40645-024-00643-w","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Garnet peridotite xenoliths have been rarely reported from suboceanic mantle. Petrographic and geochemical characteristics of garnet-bearing oceanic peridotite xenoliths provide precious information on dynamics of the suboceanic lithosphere and asthenosphere interaction. We examined a lherzolite xenolith included in olivine nephelinite lava from Aitutaki Island, a member of the Cook-Austral volcanic chain. The lherzolite xenolith contains reddish fine-grained (< 5 µm in size) mineral aggregates (FMAs) with size range of 0.5–6 mm, consisting of olivine, calcic and sodic plagioclases, aluminous spinel, native iron, and nepheline. Microstructural observations and chemical data corroborate that the FMA is a decomposed pyrope-rich garnet including chromian spinel grains with an irregular highly indented morphology in the center. The FMA is surrounded by pyroxene-poor and olivine-rich aureole. The spatial and morphological relationships of FMA and chromian spinel with pyroxene-depleted margin suggest a reaction of aluminous spinel + pyroxenes → pyrope-rich garnet + olivine, which requires a compression before decomposition of the garnet to FMA. An orthopyroxene grain shows slight but clear chemical zoning characterized by increase in Al, Ca, and Cr from the grain center to the rim. The zoning patterns of Al and Ca in the orthopyroxene grain can be modeled by diffusion-controlled solid-state reactions induced by pressure and temperature changes, keeping surface concentrations in equilibrium with the other coexisting mineral phases. The results indicate that the mantle, from which the lherzolite xenolith was derived, underwent isothermal decompression followed by a weak heating on a time scale of a few tenths of million years before the xenolith extraction. From the deduced compression and decompression histories, we hypothesize that the mantle beneath Aitutaki Island was once dragged down to a garnet-stable deep mantle region and brought up later by small-scale sublithospheric convection.

Abstract Image

库克群岛艾图塔基岛一块含 "石榴石 "的蛭石异长岩中的洋底小尺度对流证据
洋底地幔中的石榴石橄榄岩闪长岩鲜有报道。含石榴石的大洋橄榄岩异长岩的岩石学和地球化学特征为研究洋底岩石圈和星体圈相互作用的动力学提供了宝贵的信息。我们研究了库克-澳大利亚火山链成员艾图塔基岛橄榄石霞石熔岩中的一块蛭石异长岩。蛭石异长岩中含有红色细粒(大小为 5 µm)矿物集合体(FMAs),大小范围为 0.5-6 mm,由橄榄石、钙斜长石和钠斜长石、铝尖晶石、原生铁和霞石组成。显微结构观察和化学数据证实,FMA 是一种富含火成岩的分解石榴石,其中包括铬尖晶石颗粒,其中心具有不规则的高度凹陷形态。FMA 周围环绕着贫辉石和富含橄榄石的光斑。FMA和铬尖晶石与贫辉石边缘的空间和形态关系表明,铝尖晶石+辉石→富辉石石榴石+橄榄石的反应,需要在石榴石分解为FMA之前进行压缩。正长石晶粒显示出轻微但明显的化学分带,其特征是从晶粒中心到边缘的铝、钙和铬含量增加。正长石晶粒中 Al 和 Ca 的分带模式可通过压力和温度变化引起的扩散控制固态反应来模拟,使表面浓度与其他共存矿物相保持平衡。结果表明,在提取蛭石异质岩之前,蛭石异质岩所来自的地幔经历了等温减压,然后在几千万年的时间尺度上进行了微弱加热。根据推断的压缩和减压历史,我们推测艾图塔基岛下方的地幔曾经被拖拽到石榴石稳定的深地幔区域,后来又被小规模的岩石圈下对流带上来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Earth and Planetary Science
Progress in Earth and Planetary Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
6.50
自引率
5.10%
发文量
59
审稿时长
31 weeks
期刊介绍: Progress in Earth and Planetary Science (PEPS), a peer-reviewed open access e-journal, was launched by the Japan Geoscience Union (JpGU) in 2014. This international journal is devoted to high-quality original articles, reviews and papers with full data attached in the research fields of space and planetary sciences, atmospheric and hydrospheric sciences, human geosciences, solid earth sciences, and biogeosciences. PEPS promotes excellent review articles and welcomes articles with electronic attachments including videos, animations, and large original data files. PEPS also encourages papers with full data attached: papers with full data attached are scientific articles that preserve the full detailed raw research data and metadata which were gathered in their preparation and make these data freely available to the research community for further analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信