Energy-Efficient and Rotationally Adjustable Millimeter-Wave Wireless Interconnects

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Abhishek Sharma;Yanghyo Rod Kim
{"title":"Energy-Efficient and Rotationally Adjustable Millimeter-Wave Wireless Interconnects","authors":"Abhishek Sharma;Yanghyo Rod Kim","doi":"10.1109/JETCAS.2024.3422371","DOIUrl":null,"url":null,"abstract":"Conventional interconnects experience significant mechanical durability, mobility, and signal integrity challenges when dealing with moving parts or implementing extensive interconnect networks. As a result, they often hinder the performance of advanced autonomous and high-performance computing systems. This paper presents a fully rotatable and diagonally flexible ultra-short distance (≈ 1 mm) wireless interconnect. The proposed wireless interconnect comprises a 57-GHz transceiver integrated with a folded dipole antenna through wire bonding, enabling a flexible contactless connection. Here, two folded dipoles communicate in the Fresnel zone (radiative near-field), where we leverage the longitudinal electric fields to alleviate the polarization mismatch over the entire rotation angle. We have implemented a non-coherent on-off keying (OOK) modulation scheme and employed an automatic gain control (AGC) loop and offset canceling feedback loop to compensate for the transmission degradation and signal imbalance. The proposed system consumes 58.2 mW of power under a 1 V supply while transferring data at a rate of 10-Gb/s, achieving 5.82-pJ/bit energy efficiency.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 3","pages":"551-562"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10583936/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional interconnects experience significant mechanical durability, mobility, and signal integrity challenges when dealing with moving parts or implementing extensive interconnect networks. As a result, they often hinder the performance of advanced autonomous and high-performance computing systems. This paper presents a fully rotatable and diagonally flexible ultra-short distance (≈ 1 mm) wireless interconnect. The proposed wireless interconnect comprises a 57-GHz transceiver integrated with a folded dipole antenna through wire bonding, enabling a flexible contactless connection. Here, two folded dipoles communicate in the Fresnel zone (radiative near-field), where we leverage the longitudinal electric fields to alleviate the polarization mismatch over the entire rotation angle. We have implemented a non-coherent on-off keying (OOK) modulation scheme and employed an automatic gain control (AGC) loop and offset canceling feedback loop to compensate for the transmission degradation and signal imbalance. The proposed system consumes 58.2 mW of power under a 1 V supply while transferring data at a rate of 10-Gb/s, achieving 5.82-pJ/bit energy efficiency.
高能效、可旋转调节的毫米波无线互连器件
在处理移动部件或实施广泛的互连网络时,传统互连器件在机械耐久性、移动性和信号完整性方面面临着巨大挑战。因此,它们往往会阻碍先进的自主和高性能计算系统的性能。本文提出了一种完全可旋转、对角线灵活的超短距离(≈ 1 毫米)无线互连器件。所提出的无线互联由一个 57 GHz 收发器和一个折叠偶极子天线组成,通过线键合实现了灵活的非接触式连接。在这里,两个折叠偶极子在菲涅尔区(辐射近场)进行通信,我们利用纵向电场来缓解整个旋转角度的极化失配。我们采用了非相干开关键控(OOK)调制方案,并使用了自动增益控制(AGC)环路和偏移抵消反馈环路来补偿传输劣化和信号失衡。所提出的系统在 1 V 电源下的功耗为 58.2 mW,数据传输速率为 10Gb/s,实现了 5.82-pJ/bit 的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信