Mean-variance portfolio selection in jump-diffusion model under no-shorting constraint: A viscosity solution approach

Xiaomin Shi, Zuo Quan Xu
{"title":"Mean-variance portfolio selection in jump-diffusion model under no-shorting constraint: A viscosity solution approach","authors":"Xiaomin Shi, Zuo Quan Xu","doi":"arxiv-2406.03709","DOIUrl":null,"url":null,"abstract":"This paper concerns a continuous time mean-variance (MV) portfolio selection\nproblem in a jump-diffusion financial model with no-shorting trading\nconstraint. The problem is reduced to two subproblems: solving a stochastic\nlinear-quadratic (LQ) control problem under control constraint, and finding a\nmaximal point of a real function. Based on a two-dimensional fully coupled\nordinary differential equation (ODE), we construct an explicit viscosity\nsolution to the Hamilton-Jacobi-Bellman equation of the constrained LQ problem.\nTogether with the Meyer-It\\^o formula and a verification procedure, we obtain\nthe optimal feedback controls of the constrained LQ problem and the original MV\nproblem, which corrects the flawed results in some existing literatures. In\naddition, closed-form efficient portfolio and efficient frontier are derived.\nIn the end, we present several examples where the two-dimensional ODE is\ndecoupled.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns a continuous time mean-variance (MV) portfolio selection problem in a jump-diffusion financial model with no-shorting trading constraint. The problem is reduced to two subproblems: solving a stochastic linear-quadratic (LQ) control problem under control constraint, and finding a maximal point of a real function. Based on a two-dimensional fully coupled ordinary differential equation (ODE), we construct an explicit viscosity solution to the Hamilton-Jacobi-Bellman equation of the constrained LQ problem. Together with the Meyer-It\^o formula and a verification procedure, we obtain the optimal feedback controls of the constrained LQ problem and the original MV problem, which corrects the flawed results in some existing literatures. In addition, closed-form efficient portfolio and efficient frontier are derived. In the end, we present several examples where the two-dimensional ODE is decoupled.
无做空约束下跳跃扩散模型中的均方差投资组合选择:粘性求解方法
本文涉及一个具有无做空交易约束的跳跃扩散金融模型中的连续时间均值方差(MV)投资组合选择问题。该问题被简化为两个子问题:求解控制约束下的随机线性二次方(LQ)控制问题,以及寻找实函数的最大点。基于二维全耦合常微分方程(ODE),我们构建了约束 LQ 问题的 Hamilton-Jacobi-Bellman 方程的显式粘度解,结合 Meyer-It\^o 公式和验证过程,我们得到了约束 LQ 问题和原始 MV 问题的最优反馈控制,纠正了一些现有文献中存在缺陷的结果。最后,我们举了几个二维 ODE 解耦的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信