{"title":"Cross-Coupling First-Order Gradient Superconducting Quantum Interference Device for Current Sensing","authors":"Qing Chen, Qing Zhong, Wei Li, Wenhui Cao, Jinjin Li, Jianting Zhao, Da Xu","doi":"10.1007/s10909-024-03182-2","DOIUrl":null,"url":null,"abstract":"<div><p>High sensitivity and low noise of superconducting quantum interference devices make them ideal for reading the minute changes in resistance of a transition-edge sensor, which occurs when it absorbs energy or power. A series of first-order gradient, cross-coupling octagonal SQUIDs specifically tailored for use in TES were developed and fabricated for the advantage of lower parasitic capacitance compared with the overlap-coupling ones. It is obtained that a lower screening parameter and increased shunt resistance per junction lead to a higher flux-to-voltage transfer coefficient. This enhancement significantly boosts detection sensitivity and effectively minimizes noise contributions from electronics operating at room temperature. The low-temperature measurement results of the sample with an input coil of 3.5 turns indicate that a small device current white noise of 4.8 pA/√Hz, a device flux white noise of 1.1 μΦ<sub>0</sub>/√Hz, and an optimal flux-to-voltage transfer coefficient of 338.2 μV/Φ<sub>0</sub> are achieved. The bandwidth of a SQUID current sensor with a smaller inductance of the input coil and a larger shunt resistance exceeds 10 MHz. SQUID current sensors, featuring octagonal structures with the first-order gradient cross-coupling, exhibit low flux noise, low current noise, and a high flux-to-voltage transfer coefficient, which can satisfy the requirements of TES applications.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03182-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
High sensitivity and low noise of superconducting quantum interference devices make them ideal for reading the minute changes in resistance of a transition-edge sensor, which occurs when it absorbs energy or power. A series of first-order gradient, cross-coupling octagonal SQUIDs specifically tailored for use in TES were developed and fabricated for the advantage of lower parasitic capacitance compared with the overlap-coupling ones. It is obtained that a lower screening parameter and increased shunt resistance per junction lead to a higher flux-to-voltage transfer coefficient. This enhancement significantly boosts detection sensitivity and effectively minimizes noise contributions from electronics operating at room temperature. The low-temperature measurement results of the sample with an input coil of 3.5 turns indicate that a small device current white noise of 4.8 pA/√Hz, a device flux white noise of 1.1 μΦ0/√Hz, and an optimal flux-to-voltage transfer coefficient of 338.2 μV/Φ0 are achieved. The bandwidth of a SQUID current sensor with a smaller inductance of the input coil and a larger shunt resistance exceeds 10 MHz. SQUID current sensors, featuring octagonal structures with the first-order gradient cross-coupling, exhibit low flux noise, low current noise, and a high flux-to-voltage transfer coefficient, which can satisfy the requirements of TES applications.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.