On dense, locally finite subgroups of the automorphism group of certain homogeneous structures

IF 0.4 4区 数学 Q4 LOGIC
Gábor Sági
{"title":"On dense, locally finite subgroups of the automorphism group of certain homogeneous structures","authors":"Gábor Sági","doi":"10.1002/malq.202200060","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> be a countable structure such that each finite partial isomorphism of it can be extended to an automorphism. Evans asked if the age (set of finite substructures) of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> satisfies Hrushovski's extension property, then is it true that the automorphism group <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>Aut</mo>\n </mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{{\\it Aut}}(\\mathcal {A})$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> contains a dense, locally finite subgroup? In order to investigate this question, in the previous decades a coherent variant of Hrushovski's extension property has been introduced and studied. Among other results, we provide equivalent conditions for the existence of a dense, locally finite subgroup of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>Aut</mo>\n </mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{{\\it Aut}}(\\mathcal {A})$</annotation>\n </semantics></math> in terms of a (new) variant of the coherent extension property. We also compare our notion with other coherent extension properties.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"162-172"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202200060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202200060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

Let A $\mathcal {A}$ be a countable structure such that each finite partial isomorphism of it can be extended to an automorphism. Evans asked if the age (set of finite substructures) of A $\mathcal {A}$ satisfies Hrushovski's extension property, then is it true that the automorphism group Aut ( A ) $\operatorname{{\it Aut}}(\mathcal {A})$ of A $\mathcal {A}$ contains a dense, locally finite subgroup? In order to investigate this question, in the previous decades a coherent variant of Hrushovski's extension property has been introduced and studied. Among other results, we provide equivalent conditions for the existence of a dense, locally finite subgroup of Aut ( A ) $\operatorname{{\it Aut}}(\mathcal {A})$ in terms of a (new) variant of the coherent extension property. We also compare our notion with other coherent extension properties.

论某些均质结构自变群的密集局部有限子群
假设一个可数结构的每个有限部分同构都可以扩展为一个自形。埃文斯问:如果的年龄(有限子结构集)满足赫鲁晓夫斯基的扩展性质,那么其自形群是否真的包含一个密集的局部有限子群?为了研究这个问题,在过去的几十年里,人们引入并研究了赫鲁晓夫斯基外延性质的一个连贯变体。在其他结果中,我们根据相干扩展性质的(新)变体,为密集局部有限子群的存在提供了等价条件。我们还将我们的概念与其他相干外延性质进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信