{"title":"Zero-Dimensional Interstitial Electron-Induced Spin–Orbit Coupling Dirac States in Sandwich Electride","authors":"Weizhen Meng, Jiayu Jiang, Yalong Jiao, Fengxian Ma, Ying Yang, Zhenxiang Cheng, Xiaotian Wang","doi":"10.1002/smsc.202400131","DOIUrl":null,"url":null,"abstract":"The development of inorganic electrides offers new possibilities for studying topological states due to the nonnuclear-binding properties displayed by interstitial electrons. Herein, a sandwich electride 2[CaCl]<sup>+</sup>:2e<sup>−</sup> is designed, featuring a tetragonal lattice structure, including two atomic lattice layers and one interstitial electron layer. The interstitial electrons form nonsymmorphic-symmetry-protected Dirac points (DPs) at the X and M points, which are robust against the spin–orbit coupling effect. DPs exhibit an approximately elliptical shape, characterized by a relatively high anisotropy, resulting from the interplay between the electron and atomic layers. In addition, 2[CaCl]<sup>+</sup>:2e<sup>−</sup> possesses a lower work function (WF) (3.43 eV), endowing it with robust electron-supplying characteristics. Due to the low WF and interstitial electrons, 2[CaCl]<sup>+</sup>:2e<sup>−</sup> loaded Ru shows outstanding catalytic performance for N<sub>2</sub> cleavage. A potential research platform for exploring the formation of topological states and promoting nitrogen cracking in electrides is provided.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of inorganic electrides offers new possibilities for studying topological states due to the nonnuclear-binding properties displayed by interstitial electrons. Herein, a sandwich electride 2[CaCl]+:2e− is designed, featuring a tetragonal lattice structure, including two atomic lattice layers and one interstitial electron layer. The interstitial electrons form nonsymmorphic-symmetry-protected Dirac points (DPs) at the X and M points, which are robust against the spin–orbit coupling effect. DPs exhibit an approximately elliptical shape, characterized by a relatively high anisotropy, resulting from the interplay between the electron and atomic layers. In addition, 2[CaCl]+:2e− possesses a lower work function (WF) (3.43 eV), endowing it with robust electron-supplying characteristics. Due to the low WF and interstitial electrons, 2[CaCl]+:2e− loaded Ru shows outstanding catalytic performance for N2 cleavage. A potential research platform for exploring the formation of topological states and promoting nitrogen cracking in electrides is provided.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.