Oleksandra O. Vinnichenko, Vyacheslav M. Boyko, Roman O. Popovych
{"title":"Lie reductions and exact solutions of dispersionless Nizhnik equation","authors":"Oleksandra O. Vinnichenko, Vyacheslav M. Boyko, Roman O. Popovych","doi":"10.1007/s13324-024-00925-y","DOIUrl":null,"url":null,"abstract":"<div><p>We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00925-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.