Lie reductions and exact solutions of dispersionless Nizhnik equation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Oleksandra O. Vinnichenko, Vyacheslav M. Boyko, Roman O. Popovych
{"title":"Lie reductions and exact solutions of dispersionless Nizhnik equation","authors":"Oleksandra O. Vinnichenko,&nbsp;Vyacheslav M. Boyko,&nbsp;Roman O. Popovych","doi":"10.1007/s13324-024-00925-y","DOIUrl":null,"url":null,"abstract":"<div><p>We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00925-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We exhaustively classify the Lie reductions of the real dispersionless Nizhnik equation to partial differential equations in two independent variables and to ordinary differential equations. Lie and point symmetries of reduced equations are comprehensively studied, including the analysis of which of them correspond to hidden symmetries of the original equation. If necessary, associated Lie reductions of a nonlinear Lax representation of the dispersionless Nizhnik equation are carried out as well. As a result, we construct wide families of new invariant solutions of this equation in explicit form in terms of elementary, Lambert and hypergeometric functions as well as in parametric or implicit form. We show that Lie reductions to algebraic equations lead to no new solutions of this equation in addition to the constructed ones. Multiplicative separation of variables is used for illustrative construction of non-invariant solutions.

无分散尼兹尼克方程的列还原和精确解
我们对实无分散尼兹尼克方程到两个独立变量偏微分方程和常微分方程的列还原进行了详尽分类。我们全面研究了还原方程的列对称性和点对称性,包括分析其中哪些对称性与原始方程的隐藏对称性相对应。如有必要,还将对无分散尼兹尼克方程的非线性 Lax 表示进行相关的 Lie 还原。因此,我们以基本函数、朗伯函数和超几何函数的显式形式以及参数式或隐式形式构建了该方程的大量新不变解。我们证明,除了所构建的解之外,代数方程的列还原不会导致该方程的新解。乘法分离变量用于说明非不变解的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信