Muyuan Ma, Jianhong An, Tingting Jiang, Keping Xie
{"title":"GATA6 in pancreatic cancer initiation and progression","authors":"Muyuan Ma, Jianhong An, Tingting Jiang, Keping Xie","doi":"10.1016/j.gendis.2024.101353","DOIUrl":null,"url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy characterized by insidious onset and lack of effective therapy. The molecular pathogenesis of PDA remains to be understood fully. Transcriptional factor GATA6 is an important transcriptional regulator in normal pancreas development, particularly in the initial specification and differentiation of the pancreas. Recent studies have linked pancreatic malignancy closely to GATA6. Increased levels of GATA6 expression enhance pancreatic cancer cell growth. GATA6 emerges as a lineage-specific oncogenic factor in PDA, augmenting the oncogenic phenotypes of PDA cells upon its overexpression. However, elevated GATA6 levels are correlated with well-differentiated tumors and a more favorable patient prognosis. Experimental evidence in genetic mouse models has revealed a tumor-suppressive role for GATA6. The circumstantial roles of GATA6 in pancreatic tumorigenesis remain to be defined. This review aims to elucidate recent advances in comprehending GATA6, emphasizing its crucial roles in both pancreas physiology and pathology. Special attention will be given to its involvement in PDA pathogenesis, exploring its potential as a novel biomarker and a promising therapeutic target for PDA.","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"59 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.gendis.2024.101353","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy characterized by insidious onset and lack of effective therapy. The molecular pathogenesis of PDA remains to be understood fully. Transcriptional factor GATA6 is an important transcriptional regulator in normal pancreas development, particularly in the initial specification and differentiation of the pancreas. Recent studies have linked pancreatic malignancy closely to GATA6. Increased levels of GATA6 expression enhance pancreatic cancer cell growth. GATA6 emerges as a lineage-specific oncogenic factor in PDA, augmenting the oncogenic phenotypes of PDA cells upon its overexpression. However, elevated GATA6 levels are correlated with well-differentiated tumors and a more favorable patient prognosis. Experimental evidence in genetic mouse models has revealed a tumor-suppressive role for GATA6. The circumstantial roles of GATA6 in pancreatic tumorigenesis remain to be defined. This review aims to elucidate recent advances in comprehending GATA6, emphasizing its crucial roles in both pancreas physiology and pathology. Special attention will be given to its involvement in PDA pathogenesis, exploring its potential as a novel biomarker and a promising therapeutic target for PDA.
期刊介绍:
Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch.
Aims and Scopes
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.