Jing Zhang, Zhuoying Liao, Jie Shu, Jingpeng Yue, Zhenguo Liu, Ran Tao
{"title":"Interval prediction of short-term photovoltaic power based on an improved GRU model","authors":"Jing Zhang, Zhuoying Liao, Jie Shu, Jingpeng Yue, Zhenguo Liu, Ran Tao","doi":"10.1002/ese3.1811","DOIUrl":null,"url":null,"abstract":"<p>The accurate prediction of photovoltaic (PV) power is crucial for planning, constructing, and scheduling high-penetration distributed PV power systems. Traditional point prediction methods suffer from instability and lack reliability, which can be effectively addressed through interval prediction. This study proposes a short-term PV power interval prediction method based on the framework of sparrow search algorithm (SSA)-variational mode decomposition (VMD)-convolutional neural network (CNN)-gate recurrent unit (GRU). First, PV data undergo similar day clustering based on permutation entropy and VMD is applied to solar radiation signals with high correlation. Then, the hyperparameters of GRU are optimized by SSA according to the comprehensive evaluation indicator of interval prediction proposed in this study. Subsequently, quantile prediction results are obtained based on CNN-GRU using the optimal parameters from SSA optimization. Finally, the prediction interval is composed of multiple quantile prediction results. A MATLAB R2022b program is developed to compare different prediction methods. The results demonstrate that compared to single neural network methods, the proposed method effectively improves the coverage width-based criterion. In the interval prediction of sunny and rainy similar days, the comprehensive evaluation indicators of the proposed method are only 54.3% and 37.4% of the single GRU, respectively, indicating significantly improved interval prediction accuracy.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1811","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1811","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate prediction of photovoltaic (PV) power is crucial for planning, constructing, and scheduling high-penetration distributed PV power systems. Traditional point prediction methods suffer from instability and lack reliability, which can be effectively addressed through interval prediction. This study proposes a short-term PV power interval prediction method based on the framework of sparrow search algorithm (SSA)-variational mode decomposition (VMD)-convolutional neural network (CNN)-gate recurrent unit (GRU). First, PV data undergo similar day clustering based on permutation entropy and VMD is applied to solar radiation signals with high correlation. Then, the hyperparameters of GRU are optimized by SSA according to the comprehensive evaluation indicator of interval prediction proposed in this study. Subsequently, quantile prediction results are obtained based on CNN-GRU using the optimal parameters from SSA optimization. Finally, the prediction interval is composed of multiple quantile prediction results. A MATLAB R2022b program is developed to compare different prediction methods. The results demonstrate that compared to single neural network methods, the proposed method effectively improves the coverage width-based criterion. In the interval prediction of sunny and rainy similar days, the comprehensive evaluation indicators of the proposed method are only 54.3% and 37.4% of the single GRU, respectively, indicating significantly improved interval prediction accuracy.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.