Colloidal TiO2 nanocrystals with engineered defectivity and optical properties†

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Julia J. Chang, Bin Yuan, Sandro Mignuzzi, Riccardo Sapienza, Francesco Mezzadri and Ludovico Cademartiri
{"title":"Colloidal TiO2 nanocrystals with engineered defectivity and optical properties†","authors":"Julia J. Chang, Bin Yuan, Sandro Mignuzzi, Riccardo Sapienza, Francesco Mezzadri and Ludovico Cademartiri","doi":"10.1039/D4NH00143E","DOIUrl":null,"url":null,"abstract":"<p >Partially reduced forms of titanium dioxide (sometimes called “black” titania) have attracted widespread interest as promising photocatalysts of oxidation due to their absorption in the visible region. The main approaches to produce it rely on postprocessing at high temperatures (up to 800 °C) and high pressures (up to 40 bar) or on highly reactive precursors (<em>e.g.</em>, TiH<small><sub>2</sub></small>), and yield powders with poorly controlled sizes, shapes, defect concentrations and distributions. We describe an approach for the one-step synthesis of TiO<small><sub>2</sub></small> colloidal nanocrystals at atmospheric pressure and temperatures as low as 280 °C. The temperature of the reaction allows the density of oxygen vacancies to be controlled by nearly two orders of magnitude independently of their size, shape, or colloidal stability. This synthetic pathway appears to produce vacancies that are homogeneously distributed in the nanocrystals, rather than being concentrated in an amorphous shell. As a result, the defects are protected from oxidation and result in stable optical properties in oxidizing environments.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1568-1573"},"PeriodicalIF":8.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d4nh00143e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Partially reduced forms of titanium dioxide (sometimes called “black” titania) have attracted widespread interest as promising photocatalysts of oxidation due to their absorption in the visible region. The main approaches to produce it rely on postprocessing at high temperatures (up to 800 °C) and high pressures (up to 40 bar) or on highly reactive precursors (e.g., TiH2), and yield powders with poorly controlled sizes, shapes, defect concentrations and distributions. We describe an approach for the one-step synthesis of TiO2 colloidal nanocrystals at atmospheric pressure and temperatures as low as 280 °C. The temperature of the reaction allows the density of oxygen vacancies to be controlled by nearly two orders of magnitude independently of their size, shape, or colloidal stability. This synthetic pathway appears to produce vacancies that are homogeneously distributed in the nanocrystals, rather than being concentrated in an amorphous shell. As a result, the defects are protected from oxidation and result in stable optical properties in oxidizing environments.

Abstract Image

具有工程缺陷和光学特性的胶体二氧化钛纳米晶体
部分还原形式的二氧化钛(有时称为 "黑色 "二氧化钛)因其在可见光下的吸收能力,作为一种有前途的氧化光催化剂引起了广泛的兴趣。生产二氧化钛的主要方法依赖于高温(高达 800 °C)高压(高达 40 巴)或高活性前驱体(如 TiH2)的后处理,产生的粉末尺寸、形状、缺陷浓度和分布控制不佳。我们介绍了一种在大气压力和低至 280°C 的温度下一步合成 TiO2 胶体纳米晶体的方法。反应温度可将氧空位的密度控制在近两个数量级,而与它们的大小、形状或胶体稳定性无关。这种合成途径似乎能产生均匀分布在纳米晶体中的空位,而不是集中在无定形的外壳中。因此,这些缺陷可防止氧化,从而在氧化环境中保持稳定的光学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信