Nikesh Chelimilla, Viswanath Chinthapenta and Srikanth Korla
{"title":"Addressing data scarcity using audio signal augmentation and deep learning for bolt looseness prediction","authors":"Nikesh Chelimilla, Viswanath Chinthapenta and Srikanth Korla","doi":"10.1088/1361-665x/ad5c24","DOIUrl":null,"url":null,"abstract":"Deep learning models such as convolutional neural networks (CNNs) encounter challenges, including instability and overfitting, while predicting bolt looseness in data-scarce scenarios. In this study, we proposed a novel audio signal augmentation approach to classify bolt looseness in the event of data deficiency using CNN models. Audio signals at varied bolt torque conditions were extracted using the percussion method. Audio signal augmentation was performed using signal shifting and scaling strategies after segmenting the extracted audio signals. The unaugmented and augmented audio signals were transformed into scalograms using the continuous wavelet transform approach to train the CNN models. Upon training with augmented datasets, a promising improvement in the loss and accuracy of the CNN models in recognizing bolt looseness was noticed. One of the significant observations from the current study is that the implementation of audio signal augmentation improved the extrinsic generalization ability of the CNN models to classify bolt looseness. A maximum increase of 73.5% to identify bolt looseness in novel data was exhibited as compared to without augmentation. Overall, a maximum accuracy of 94.5% to classify bolt looseness in unseen data was demonstrated upon audio signal augmentation. In summary, the results affirm that the audio signal augmentation approach empowered the CNN models to predict bolt looseness in data-deficient scenarios accurately.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"33 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5c24","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning models such as convolutional neural networks (CNNs) encounter challenges, including instability and overfitting, while predicting bolt looseness in data-scarce scenarios. In this study, we proposed a novel audio signal augmentation approach to classify bolt looseness in the event of data deficiency using CNN models. Audio signals at varied bolt torque conditions were extracted using the percussion method. Audio signal augmentation was performed using signal shifting and scaling strategies after segmenting the extracted audio signals. The unaugmented and augmented audio signals were transformed into scalograms using the continuous wavelet transform approach to train the CNN models. Upon training with augmented datasets, a promising improvement in the loss and accuracy of the CNN models in recognizing bolt looseness was noticed. One of the significant observations from the current study is that the implementation of audio signal augmentation improved the extrinsic generalization ability of the CNN models to classify bolt looseness. A maximum increase of 73.5% to identify bolt looseness in novel data was exhibited as compared to without augmentation. Overall, a maximum accuracy of 94.5% to classify bolt looseness in unseen data was demonstrated upon audio signal augmentation. In summary, the results affirm that the audio signal augmentation approach empowered the CNN models to predict bolt looseness in data-deficient scenarios accurately.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.