Gradient-Robust Hybrid DG Discretizations for the Compressible Stokes Equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
P. L. Lederer, C. Merdon
{"title":"Gradient-Robust Hybrid DG Discretizations for the Compressible Stokes Equations","authors":"P. L. Lederer, C. Merdon","doi":"10.1007/s10915-024-02605-2","DOIUrl":null,"url":null,"abstract":"<p>This paper studies two hybrid discontinuous Galerkin (HDG) discretizations for the velocity-density formulation of the compressible Stokes equations with respect to several desired structural properties, namely provable convergence, the preservation of non-negativity and mass constraints for the density, and gradient-robustness. The later property dramatically enhances the accuracy in well-balanced situations, such as the hydrostatic balance where the pressure gradient balances the gravity force. One of the studied schemes employs an <span>\\(H(\\textrm{div})\\)</span>-conforming velocity ansatz space which ensures all mentioned properties, while a fully discontinuous method is shown to satisfy all properties but the gradient-robustness. Also higher-order schemes for both variants are presented and compared in three numerical benchmark problems. The final example shows the importance also for non-hydrostatic well-balanced states for the compressible Navier–Stokes equations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02605-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies two hybrid discontinuous Galerkin (HDG) discretizations for the velocity-density formulation of the compressible Stokes equations with respect to several desired structural properties, namely provable convergence, the preservation of non-negativity and mass constraints for the density, and gradient-robustness. The later property dramatically enhances the accuracy in well-balanced situations, such as the hydrostatic balance where the pressure gradient balances the gravity force. One of the studied schemes employs an \(H(\textrm{div})\)-conforming velocity ansatz space which ensures all mentioned properties, while a fully discontinuous method is shown to satisfy all properties but the gradient-robustness. Also higher-order schemes for both variants are presented and compared in three numerical benchmark problems. The final example shows the importance also for non-hydrostatic well-balanced states for the compressible Navier–Stokes equations.

Abstract Image

可压缩斯托克斯方程的梯度-稳健混合 DG 离散法
本文针对可压缩斯托克斯方程的速度-密度公式,研究了两种混合非连续伽勒金(HDG)离散方法的几种理想结构特性,即可证明的收敛性、保持密度的非负性和质量约束以及梯度稳健性。在平衡良好的情况下,如压力梯度与重力平衡的流体静力学平衡,后一种特性可显著提高精度。所研究的方案之一采用了一个(H(\textrm{div})\)顺应速度的安萨特空间,确保了上述所有特性,而完全非连续的方法除了梯度稳健性外,满足了所有特性。此外,还介绍了这两种变体的高阶方案,并在三个数值基准问题中进行了比较。最后的示例还显示了可压缩纳维-斯托克斯方程的非流体静力学良好平衡状态的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信