An hp-version of the discontinuous Galerkin method for fractional integro-differential equations with weakly singular kernels

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yanping Chen, Zhenrong Chen, Yunqing Huang
{"title":"An hp-version of the discontinuous Galerkin method for fractional integro-differential equations with weakly singular kernels","authors":"Yanping Chen, Zhenrong Chen, Yunqing Huang","doi":"10.1007/s10543-024-01026-9","DOIUrl":null,"url":null,"abstract":"<p>This paper suggests an <i>hp</i>-discontinuous Galerkin approach for the fractional integro-differential equations with weakly singular kernels. The key idea behind our method is to first convert the fractional integro-differential equations into the second kind of Volterra integral equations, and then solve the equivalent integral equations using the <i>hp</i>-discontinuous Galerkin method. We establish prior error bounds in the <span>\\(L^{2}\\)</span>-norm that is entirely explicit about the local mesh sizes, local polynomial degrees, and local regularities of the exact solutions. The use of geometrically refined meshes and linearly increasing approximation orders demonstrates, in particular, that exponential convergence is achievable for solutions with endpoint singularities. Numerical results indicate the usefulness of the proposed method.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"33 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01026-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper suggests an hp-discontinuous Galerkin approach for the fractional integro-differential equations with weakly singular kernels. The key idea behind our method is to first convert the fractional integro-differential equations into the second kind of Volterra integral equations, and then solve the equivalent integral equations using the hp-discontinuous Galerkin method. We establish prior error bounds in the \(L^{2}\)-norm that is entirely explicit about the local mesh sizes, local polynomial degrees, and local regularities of the exact solutions. The use of geometrically refined meshes and linearly increasing approximation orders demonstrates, in particular, that exponential convergence is achievable for solutions with endpoint singularities. Numerical results indicate the usefulness of the proposed method.

Abstract Image

弱奇异内核分式积分微分方程的非连续伽勒金方法 hp 版本
本文针对具有弱奇异内核的分数积分微分方程提出了一种 hp-非连续 Galerkin 方法。我们方法的主要思想是首先将分式微分方程转换为第二类 Volterra 积分方程,然后使用 hp-非连续 Galerkin 方法求解等效积分方程。我们建立了 \(L^{2}\)-norm 的先验误差边界,完全明确了精确解的局部网格尺寸、局部多项式度和局部正则性。几何细化网格和线性递增近似阶数的使用特别表明,对于具有端点奇异性的解,指数收敛是可以实现的。数值结果表明了所提方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信