Guilherme Ferraz de Arruda, Alberto Aleta, Yamir Moreno
{"title":"Contagion dynamics on higher-order networks","authors":"Guilherme Ferraz de Arruda, Alberto Aleta, Yamir Moreno","doi":"10.1038/s42254-024-00733-0","DOIUrl":null,"url":null,"abstract":"A paramount research challenge in network and complex systems science is to understand the dissemination of diseases, information and behaviour. The COVID-19 pandemic and the proliferation of misinformation are examples that highlight the importance of these dynamic processes. In recent years, it has become clear that studies of higher-order networks may unlock new avenues for investigating such processes. Despite being in its early stages, the examination of social contagion in higher-order networks has witnessed a surge of research and concepts, revealing different functional forms for the spreading dynamics and offering novel insights. This Review presents a focused overview of this body of literature and proposes a unified formalism that covers most of these forms. The goal is to underscore the similarities and distinctions among various models to motivate further research on the general and universal properties of such models. We also highlight that although the path for additional theoretical exploration appears clear, the empirical validation of these models through data or experiments remains scant, with an unsettled roadmap as of today. We therefore conclude with some perspectives aimed at providing possible research directions that could contribute to a better understanding of this class of dynamical processes, both from a theoretical and a data-oriented point of view. Contagion dynamics in higher-order networks have witnessed a surge of research and concepts, offering new insights but also exposing many diverse functional forms of spread. This Review provides a focused overview and proposes a unified formalism covering most of these forms.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":null,"pages":null},"PeriodicalIF":44.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00733-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A paramount research challenge in network and complex systems science is to understand the dissemination of diseases, information and behaviour. The COVID-19 pandemic and the proliferation of misinformation are examples that highlight the importance of these dynamic processes. In recent years, it has become clear that studies of higher-order networks may unlock new avenues for investigating such processes. Despite being in its early stages, the examination of social contagion in higher-order networks has witnessed a surge of research and concepts, revealing different functional forms for the spreading dynamics and offering novel insights. This Review presents a focused overview of this body of literature and proposes a unified formalism that covers most of these forms. The goal is to underscore the similarities and distinctions among various models to motivate further research on the general and universal properties of such models. We also highlight that although the path for additional theoretical exploration appears clear, the empirical validation of these models through data or experiments remains scant, with an unsettled roadmap as of today. We therefore conclude with some perspectives aimed at providing possible research directions that could contribute to a better understanding of this class of dynamical processes, both from a theoretical and a data-oriented point of view. Contagion dynamics in higher-order networks have witnessed a surge of research and concepts, offering new insights but also exposing many diverse functional forms of spread. This Review provides a focused overview and proposes a unified formalism covering most of these forms.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.