Operando Raman Gradient Analysis for Temperature-Dependent Electrolyte Characterization

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Lorenz F. Olbrich, Ben Jagger, Johannes Ihli and Mauro Pasta*, 
{"title":"Operando Raman Gradient Analysis for Temperature-Dependent Electrolyte Characterization","authors":"Lorenz F. Olbrich,&nbsp;Ben Jagger,&nbsp;Johannes Ihli and Mauro Pasta*,&nbsp;","doi":"10.1021/acsenergylett.4c00954","DOIUrl":null,"url":null,"abstract":"<p >Transport and thermodynamic properties are integral parameters to understand, model, and optimize state-of-the-art and next-generation battery electrolytes. The accurate measurement of these properties is experimentally challenging as well as time- and resource-intensive, and consequently, reports are scarce. Their dependence on temperature is explored even less and is commonly limited to a few temperature points. Recently, we introduced an operando Raman gradient analysis (ORGA) tool to extract transport and thermodynamic properties. Here, we expand the capabilities of ORGA by incorporating a temperature-sensitive external reference into the design. With this enhancement, we are able to visualize the local concentration of any Raman-active species in the electrolyte and detect lithium filament nucleation. We demonstrate and validate this new functionality of ORGA via an examination of lithium bis(fluorosulfonyl)imide (LiFSI) in tetraethylene glycol dimethyl ether (G4) as a function of temperature. All transport properties and activation energies are reported, and the effect of temperature is discussed.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c00954","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c00954","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transport and thermodynamic properties are integral parameters to understand, model, and optimize state-of-the-art and next-generation battery electrolytes. The accurate measurement of these properties is experimentally challenging as well as time- and resource-intensive, and consequently, reports are scarce. Their dependence on temperature is explored even less and is commonly limited to a few temperature points. Recently, we introduced an operando Raman gradient analysis (ORGA) tool to extract transport and thermodynamic properties. Here, we expand the capabilities of ORGA by incorporating a temperature-sensitive external reference into the design. With this enhancement, we are able to visualize the local concentration of any Raman-active species in the electrolyte and detect lithium filament nucleation. We demonstrate and validate this new functionality of ORGA via an examination of lithium bis(fluorosulfonyl)imide (LiFSI) in tetraethylene glycol dimethyl ether (G4) as a function of temperature. All transport properties and activation energies are reported, and the effect of temperature is discussed.

Abstract Image

Abstract Image

用于温度相关性电解质表征的操作拉曼梯度分析法
输运和热力学特性是了解、模拟和优化最先进电池和下一代电池电解质不可或缺的参数。精确测量这些特性在实验上极具挑战性,而且需要大量的时间和资源,因此相关报告很少。对它们与温度的关系的探索就更少了,通常仅限于几个温度点。最近,我们推出了一种操作拉曼梯度分析(ORGA)工具,用于提取传输和热力学性质。在这里,我们通过在设计中加入温度敏感的外部参考来扩展 ORGA 的功能。有了这一增强功能,我们就能可视化电解质中任何拉曼活性物种的局部浓度,并检测锂丝成核情况。我们通过检测四甘醇二甲醚(G4)中双(氟磺酰)亚胺锂(LiFSI)的温度函数,展示并验证了 ORGA 的这一新功能。报告了所有传输特性和活化能,并讨论了温度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信