Jan Gregorovič, Martin Kolář, Francine Meylan, David Sykes
{"title":"Models of CR Manifolds and Their Symmetry Algebras","authors":"Jan Gregorovič, Martin Kolář, Francine Meylan, David Sykes","doi":"10.1007/s00006-024-01341-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we give an exposition of several recent results on local symmetries of real submanifolds in complex space, featuring new examples and important corollaries. Departing from Levi non-degenerate hypersurfaces, treated in the classical Chern–Moser theory, we explore three important classes of manifolds, which naturally extend the classical case. We start with quadratic models for real submanifolds of higher codimension and review some recent striking results, which demonstrate that such higher codimension models may possess symmetries of arbitrarily high jet degree. This disproves the long held belief that the fundamental 2-jet determination results from Chern–Moser theory extend to this case. As a second case, we consider hypersurfaces with singular Levi form at a point, which are of finite multitype. This leads to the study of holomorphically nondegenerate polynomial models. We outline several results on their symmetry algebras including a characterization of models admitting nonlinear symmetries. In the third part we consider the class of structures with everywhere singular Levi forms that has received the most attention recently, namely everywhere 2-nondegenerate structures. We present a computation of their Catlin multitype and results on symmetry algebras of their weighted homogeneous (w.r.t. multitype) models.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01341-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we give an exposition of several recent results on local symmetries of real submanifolds in complex space, featuring new examples and important corollaries. Departing from Levi non-degenerate hypersurfaces, treated in the classical Chern–Moser theory, we explore three important classes of manifolds, which naturally extend the classical case. We start with quadratic models for real submanifolds of higher codimension and review some recent striking results, which demonstrate that such higher codimension models may possess symmetries of arbitrarily high jet degree. This disproves the long held belief that the fundamental 2-jet determination results from Chern–Moser theory extend to this case. As a second case, we consider hypersurfaces with singular Levi form at a point, which are of finite multitype. This leads to the study of holomorphically nondegenerate polynomial models. We outline several results on their symmetry algebras including a characterization of models admitting nonlinear symmetries. In the third part we consider the class of structures with everywhere singular Levi forms that has received the most attention recently, namely everywhere 2-nondegenerate structures. We present a computation of their Catlin multitype and results on symmetry algebras of their weighted homogeneous (w.r.t. multitype) models.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.