{"title":"Sperm-Specific CatSper is Not Conserved in All Vertebrates and May Not be the Only Progesterone-Responsive Ion Channel Present in Sperm.","authors":"Nishant Kumar Dubey, Vikash Kumar, Chandan Goswami","doi":"10.1007/s00232-024-00316-1","DOIUrl":null,"url":null,"abstract":"<p><p>Progesterone (P4) acts as a key conserved signalling molecule in vertebrate reproduction. P4 is especially important for mature sperm physiology and subsequent reproductive success. \"CatSpermasome\", a multi-unit molecular complex, has been suggested to be the main if not the only P4-responsive atypical Ca<sup>2+</sup>-ion channel present in mature sperm. Altogether, here we analyse the protein sequences of CatSper1-4 from more than 500 vertebrates ranging from early fishes to humans. CatSper1 becomes longer in mammals due to sequence gain mainly at the N-terminus. Overall the conservation of full-length CatSper1-4 as well as the individual TM regions remain low. The lipid-water-interface residues (i.e. a 5 amino acid stretch sequence present on both sides of each TM region) also remain highly diverged. No specific patterns of amino acid distributions were observed. The total frequency of positively charged, negatively charged or their ratios do not follow in any specific pattern. Similarly, the frequency of total hydrophobic, total hydrophilic residues or even their ratios remain random and do not follow any specific pattern. We noted that the CatSper1-4 genes are missing in amphibians and the CatSper1 gene is missing in birds. The high variability of CatSper1-4 and gene-loss in certain clades indicate that the \"CatSpermasome\" is not the only P4-responsive ion channel. Data indicate that the molecular evolution of CatSper is mostly guided by diverse hydrophobic ligands rather than only P4. The comparative data also suggest possibilities of other Ca<sup>2+</sup>-channel/s in vertebrate sperm that can also respond to P4.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00316-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Progesterone (P4) acts as a key conserved signalling molecule in vertebrate reproduction. P4 is especially important for mature sperm physiology and subsequent reproductive success. "CatSpermasome", a multi-unit molecular complex, has been suggested to be the main if not the only P4-responsive atypical Ca2+-ion channel present in mature sperm. Altogether, here we analyse the protein sequences of CatSper1-4 from more than 500 vertebrates ranging from early fishes to humans. CatSper1 becomes longer in mammals due to sequence gain mainly at the N-terminus. Overall the conservation of full-length CatSper1-4 as well as the individual TM regions remain low. The lipid-water-interface residues (i.e. a 5 amino acid stretch sequence present on both sides of each TM region) also remain highly diverged. No specific patterns of amino acid distributions were observed. The total frequency of positively charged, negatively charged or their ratios do not follow in any specific pattern. Similarly, the frequency of total hydrophobic, total hydrophilic residues or even their ratios remain random and do not follow any specific pattern. We noted that the CatSper1-4 genes are missing in amphibians and the CatSper1 gene is missing in birds. The high variability of CatSper1-4 and gene-loss in certain clades indicate that the "CatSpermasome" is not the only P4-responsive ion channel. Data indicate that the molecular evolution of CatSper is mostly guided by diverse hydrophobic ligands rather than only P4. The comparative data also suggest possibilities of other Ca2+-channel/s in vertebrate sperm that can also respond to P4.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.