SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-07-15 Epub Date: 2024-07-05 DOI:10.1016/j.crmeth.2024.100813
Yupu Xu, Yuzhou Wang, Shisong Ma
{"title":"SingleCellGGM enables gene expression program identification from single-cell transcriptomes and facilitates universal cell label transfer.","authors":"Yupu Xu, Yuzhou Wang, Shisong Ma","doi":"10.1016/j.crmeth.2024.100813","DOIUrl":null,"url":null,"abstract":"<p><p>Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100813"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Gene co-expression analysis of single-cell transcriptomes, aiming to define functional relationships between genes, is challenging due to excessive dropout values. Here, we developed a single-cell graphical Gaussian model (SingleCellGGM) algorithm to conduct single-cell gene co-expression network analysis. When applied to mouse single-cell datasets, SingleCellGGM constructed networks from which gene co-expression modules with highly significant functional enrichment were identified. We considered the modules as gene expression programs (GEPs). These GEPs enable direct cell-type annotation of individual cells without cell clustering, and they are enriched with genes required for the functions of the corresponding cells, sometimes at levels greater than 10-fold. The GEPs are conserved across datasets and enable universal cell-type label transfer across different studies. We also proposed a dimension-reduction method through averaging by GEPs for single-cell analysis, enhancing the interpretability of results. Thus, SingleCellGGM offers a unique GEP-based perspective to analyze single-cell transcriptomes and reveals biological insights shared by different single-cell datasets.

SingleCellGGM 可从单细胞转录组中识别基因表达程序,并促进通用细胞标签转移。
单细胞转录组的基因共表达分析旨在确定基因之间的功能关系,但由于丢失值过高,这种分析具有挑战性。在这里,我们开发了一种单细胞图形高斯模型(SingleCellGGM)算法来进行单细胞基因共表达网络分析。当应用于小鼠单细胞数据集时,SingleCellGGM构建了网络,并从中发现了具有高度显著功能富集的基因共表达模块。我们将这些模块视为基因表达程序(GEP)。这些基因表达程序可直接对单个细胞进行细胞类型注释,而无需进行细胞聚类,它们富集了相应细胞功能所需的基因,有时富集水平超过 10 倍。GEPs在不同数据集之间保持一致,可在不同研究中实现通用的细胞类型标签转移。我们还为单细胞分析提出了一种通过 GEPs 平均的降维方法,提高了结果的可解释性。因此,SingleCellGGM 为分析单细胞转录组提供了独特的基于 GEP 的视角,并揭示了不同单细胞数据集共有的生物学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信