{"title":"Comparative outcomes of AI-assisted ChatGPT and face-to-face consultations in infertility patients: a cross-sectional study.","authors":"Shaolong Cheng, Yuping Xiao, Ling Liu, Xingyu Sun","doi":"10.1093/postmj/qgae083","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the advent of artificial intelligence (AI) in healthcare, digital platforms like ChatGPT offer innovative alternatives to traditional medical consultations. This study seeks to understand the comparative outcomes of AI-assisted ChatGPT consultations and conventional face-to-face interactions among infertility patients.</p><p><strong>Methods: </strong>A cross-sectional study was conducted involving 120 infertility patients, split evenly between those consulting via ChatGPT and traditional face-to-face methods. The primary outcomes assessed were patient satisfaction, understanding, and consultation duration. Secondary outcomes included demographic information, clinical history, and subsequent actions post-consultation.</p><p><strong>Results: </strong>While both consultation methods had a median age of 34 years, patients using ChatGPT reported significantly higher satisfaction levels (median 4 out of 5) compared to face-to-face consultations (median 3 out of 5; p < 0.001). The ChatGPT group also experienced shorter consultation durations, with a median difference of 12.5 minutes (p < 0.001). However, understanding, demographic distributions, and subsequent actions post-consultation were comparable between the two groups.</p><p><strong>Conclusions: </strong>AI-assisted ChatGPT consultations offer a promising alternative to traditional face-to-face consultations in assisted reproductive medicine. While patient satisfaction was higher and consultation durations were shorter with ChatGPT, further studies are required to understand the long-term implications and clinical outcomes associated with AI-driven medical consultations. Key Messages What is already known on this topic: Artificial intelligence (AI) applications, such as ChatGPT, have shown potential in various healthcare settings, including primary care and mental health support. Infertility is a significant global health issue that requires extensive consultations, often facing challenges such as long waiting times and varied patient satisfaction. Previous studies suggest that AI can offer personalized care and immediate feedback, but its efficacy compared with traditional consultations in reproductive medicine was not well-studied. What this study adds: This study demonstrates that AI-assisted ChatGPT consultations result in significantly higher patient satisfaction and shorter consultation durations compared with traditional face-to-face consultations among infertility patients. Both consultation methods were comparable in terms of patient understanding, demographic distributions, and subsequent actions postconsultation. How this study might affect research, practice, or policy: The findings suggest that AI-driven consultations could serve as an effective and efficient alternative to traditional methods, potentially reducing consultation times and improving patient satisfaction in reproductive medicine. Further research could explore the long-term impacts and broader applications of AI in clinical settings, influencing future healthcare practices and policies toward integrating AI technologies.</p>","PeriodicalId":20374,"journal":{"name":"Postgraduate Medical Journal","volume":" ","pages":"851-855"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postgraduate Medical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/postmj/qgae083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: With the advent of artificial intelligence (AI) in healthcare, digital platforms like ChatGPT offer innovative alternatives to traditional medical consultations. This study seeks to understand the comparative outcomes of AI-assisted ChatGPT consultations and conventional face-to-face interactions among infertility patients.
Methods: A cross-sectional study was conducted involving 120 infertility patients, split evenly between those consulting via ChatGPT and traditional face-to-face methods. The primary outcomes assessed were patient satisfaction, understanding, and consultation duration. Secondary outcomes included demographic information, clinical history, and subsequent actions post-consultation.
Results: While both consultation methods had a median age of 34 years, patients using ChatGPT reported significantly higher satisfaction levels (median 4 out of 5) compared to face-to-face consultations (median 3 out of 5; p < 0.001). The ChatGPT group also experienced shorter consultation durations, with a median difference of 12.5 minutes (p < 0.001). However, understanding, demographic distributions, and subsequent actions post-consultation were comparable between the two groups.
Conclusions: AI-assisted ChatGPT consultations offer a promising alternative to traditional face-to-face consultations in assisted reproductive medicine. While patient satisfaction was higher and consultation durations were shorter with ChatGPT, further studies are required to understand the long-term implications and clinical outcomes associated with AI-driven medical consultations. Key Messages What is already known on this topic: Artificial intelligence (AI) applications, such as ChatGPT, have shown potential in various healthcare settings, including primary care and mental health support. Infertility is a significant global health issue that requires extensive consultations, often facing challenges such as long waiting times and varied patient satisfaction. Previous studies suggest that AI can offer personalized care and immediate feedback, but its efficacy compared with traditional consultations in reproductive medicine was not well-studied. What this study adds: This study demonstrates that AI-assisted ChatGPT consultations result in significantly higher patient satisfaction and shorter consultation durations compared with traditional face-to-face consultations among infertility patients. Both consultation methods were comparable in terms of patient understanding, demographic distributions, and subsequent actions postconsultation. How this study might affect research, practice, or policy: The findings suggest that AI-driven consultations could serve as an effective and efficient alternative to traditional methods, potentially reducing consultation times and improving patient satisfaction in reproductive medicine. Further research could explore the long-term impacts and broader applications of AI in clinical settings, influencing future healthcare practices and policies toward integrating AI technologies.
期刊介绍:
Postgraduate Medical Journal is a peer reviewed journal published on behalf of the Fellowship of Postgraduate Medicine. The journal aims to support junior doctors and their teachers and contribute to the continuing professional development of all doctors by publishing papers on a wide range of topics relevant to the practicing clinician and teacher. Papers published in PMJ include those that focus on core competencies; that describe current practice and new developments in all branches of medicine; that describe relevance and impact of translational research on clinical practice; that provide background relevant to examinations; and papers on medical education and medical education research. PMJ supports CPD by providing the opportunity for doctors to publish many types of articles including original clinical research; reviews; quality improvement reports; editorials, and correspondence on clinical matters.