Space, the final frontier: The spatial component of phytoplankton-bacterial interactions.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Microbiology Pub Date : 2024-09-01 Epub Date: 2024-07-06 DOI:10.1111/mmi.15293
Clara Martínez-Pérez, Sophie T Zweifel, Roberto Pioli, Roman Stocker
{"title":"Space, the final frontier: The spatial component of phytoplankton-bacterial interactions.","authors":"Clara Martínez-Pérez, Sophie T Zweifel, Roberto Pioli, Roman Stocker","doi":"10.1111/mmi.15293","DOIUrl":null,"url":null,"abstract":"<p><p>Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"331-346"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15293","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microscale interactions between marine phytoplankton and bacteria shape the microenvironment of individual cells, impacting their physiology and ultimately influencing global-scale biogeochemical processes like carbon and nutrient cycling. In dilute environments such as the ocean water column, metabolic exchange between microorganisms likely requires close proximity between partners. However, the biological strategies to achieve this physical proximity remain an understudied aspect of phytoplankton-bacterial associations. Understanding the mechanisms by which these microorganisms establish and sustain spatial relationships and the extent to which spatial proximity is necessary for interactions to occur, is critical to learning how spatial associations influence the ecology of phytoplankton and bacterial communities. Here, we provide an overview of current knowledge on the role of space in shaping interactions among ocean microorganisms, encompassing behavioural and metabolic evidence. We propose that characterising phytoplankton-bacterial interactions from a spatial perspective can contribute to a mechanistic understanding of the establishment and maintenance of these associations and, consequently, an enhanced ability to predict the impact of microscale processes on ecosystem-wide phenomena.

空间,最后的边界:浮游植物-细菌相互作用的空间成分。
海洋浮游植物和细菌之间的微尺度相互作用会塑造单个细胞的微环境,影响它们的生理机能,并最终影响全球尺度的生物地球化学过程,如碳和养分循环。在海洋水体等稀释环境中,微生物之间的新陈代谢交换很可能需要伙伴之间的密切接触。然而,实现这种物理接近的生物策略仍然是浮游植物-细菌关联中一个未被充分研究的方面。了解这些微生物建立和维持空间关系的机制,以及发生相互作用所需的空间接近程度,对于了解空间关联如何影响浮游植物和细菌群落的生态学至关重要。在此,我们概述了目前关于空间在形成海洋微生物之间相互作用中的作用的知识,包括行为和代谢证据。我们认为,从空间角度描述浮游植物与细菌之间的相互作用有助于从机理上理解这些关联的建立和维持,从而提高预测微观过程对整个生态系统现象的影响的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信