Laura Cacciamani, Daniel Tomer, Mary Grace Mylod-Vargas, Aaron Selcov, Grace A Peterson, Christopher I Oseguera, Aidan Barbieux
{"title":"HD-tDCS to the lateral occipital complex improves haptic object recognition.","authors":"Laura Cacciamani, Daniel Tomer, Mary Grace Mylod-Vargas, Aaron Selcov, Grace A Peterson, Christopher I Oseguera, Aidan Barbieux","doi":"10.1007/s00221-024-06888-7","DOIUrl":null,"url":null,"abstract":"<p><p>High-definition transcranial direct current stimulation (HD-tDCS) is a non-invasive brain stimulation technique that has been shown to be safe and effective in modulating neuronal activity. The present study investigates the effect of anodal HD-tDCS on haptic object perception and memory through stimulation of the lateral occipital complex (LOC), a structure that has been shown to be involved in both visual and haptic object recognition. In this single-blind, sham-controlled, between-subjects study, blindfolded healthy, sighted participants used their right (dominant) hand to perform haptic discrimination and recognition tasks with 3D-printed, novel objects called \"Greebles\" while receiving 20 min of 2 milliamp (mA) anodal stimulation (or sham) to the left or right LOC. Compared to sham, those who received left LOC stimulation (contralateral to the hand used) showed an improvement in haptic object recognition but not discrimination-a finding that was evident from the start of the behavioral tasks. A second experiment showed that this effect was not observed with right LOC stimulation (ipsilateral to the hand used). These results suggest that HD-tDCS to the left LOC can improve recognition of objects perceived via touch. Overall, this work sheds light on the LOC as a multimodal structure that plays a key role in object recognition in both the visual and haptic modalities.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2113-2124"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06888-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) is a non-invasive brain stimulation technique that has been shown to be safe and effective in modulating neuronal activity. The present study investigates the effect of anodal HD-tDCS on haptic object perception and memory through stimulation of the lateral occipital complex (LOC), a structure that has been shown to be involved in both visual and haptic object recognition. In this single-blind, sham-controlled, between-subjects study, blindfolded healthy, sighted participants used their right (dominant) hand to perform haptic discrimination and recognition tasks with 3D-printed, novel objects called "Greebles" while receiving 20 min of 2 milliamp (mA) anodal stimulation (or sham) to the left or right LOC. Compared to sham, those who received left LOC stimulation (contralateral to the hand used) showed an improvement in haptic object recognition but not discrimination-a finding that was evident from the start of the behavioral tasks. A second experiment showed that this effect was not observed with right LOC stimulation (ipsilateral to the hand used). These results suggest that HD-tDCS to the left LOC can improve recognition of objects perceived via touch. Overall, this work sheds light on the LOC as a multimodal structure that plays a key role in object recognition in both the visual and haptic modalities.
高清晰度经颅直流电刺激(HD-tDCS)是一种非侵入性脑部刺激技术,已被证明能安全有效地调节神经元活动。本研究通过刺激外侧枕复合体(LOC)研究了阳极 HD-tDCS 对触觉物体感知和记忆的影响。在这项单盲、假对照、受试者之间的研究中,蒙住眼睛、视力正常的健康受试者在左侧或右侧枕叶外侧复合体接受20分钟2毫安(mA)阳极刺激(或假刺激)的同时,用右手(主导手)对3D打印的新奇物体 "Greebles "执行触觉辨别和识别任务。与假刺激相比,接受左侧 LOC 刺激(所用手的对侧)的人在触觉物体识别能力方面有所提高,但辨别能力没有提高--这一发现在行为任务开始时就很明显。第二项实验表明,右侧 LOC 刺激(所用手的同侧)没有观察到这种效果。这些结果表明,对左侧LOC进行HD-tDCS刺激可以提高通过触摸感知物体的识别能力。总之,这项研究揭示了 LOC 是一种多模态结构,在视觉和触觉模态的物体识别中发挥着关键作用。
期刊介绍:
Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.