Don't let valuable microbiome data go to waste: combined usage of merging and direct-joining of sequencing reads for low-quality paired-end amplicon data.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Biotechnology Letters Pub Date : 2024-10-01 Epub Date: 2024-07-06 DOI:10.1007/s10529-024-03509-9
Meganathan P Ramakodi
{"title":"Don't let valuable microbiome data go to waste: combined usage of merging and direct-joining of sequencing reads for low-quality paired-end amplicon data.","authors":"Meganathan P Ramakodi","doi":"10.1007/s10529-024-03509-9","DOIUrl":null,"url":null,"abstract":"<p><p>The pernicious nature of low-quality sequencing data warrants improvement in the bioinformatics workflow for profiling microbial diversity. The conventional merging approach, which drops a copious amount of sequencing reads when processing low-quality amplicon data, requires alternative methods. In this study, a computational workflow, a combination of merging and direct-joining where the paired-end reads lacking overlaps are concatenated and pooled with the merged sequences, is proposed to handle the low-quality amplicon data. The proposed computational strategy was compared with two workflows; the merging approach where the paired-end reads are merged, and the direct-joining approach where the reads are concatenated. The results showed that the merging approach generates a significantly low number of amplicon sequences, limits the microbiome inference, and obscures some microbial associations. In comparison to other workflows, the combination of merging and direct-joining strategy reduces the loss of amplicon data, improves the taxonomy classification, and importantly, abates the misleading results associated with the merging approach when analysing the low-quality amplicon data. The mock community analysis also supports the findings. In summary, the researchers are suggested to follow the merging and direct-joining workflow to avoid problems associated with low-quality data while profiling the microbial community structure.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"791-805"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03509-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The pernicious nature of low-quality sequencing data warrants improvement in the bioinformatics workflow for profiling microbial diversity. The conventional merging approach, which drops a copious amount of sequencing reads when processing low-quality amplicon data, requires alternative methods. In this study, a computational workflow, a combination of merging and direct-joining where the paired-end reads lacking overlaps are concatenated and pooled with the merged sequences, is proposed to handle the low-quality amplicon data. The proposed computational strategy was compared with two workflows; the merging approach where the paired-end reads are merged, and the direct-joining approach where the reads are concatenated. The results showed that the merging approach generates a significantly low number of amplicon sequences, limits the microbiome inference, and obscures some microbial associations. In comparison to other workflows, the combination of merging and direct-joining strategy reduces the loss of amplicon data, improves the taxonomy classification, and importantly, abates the misleading results associated with the merging approach when analysing the low-quality amplicon data. The mock community analysis also supports the findings. In summary, the researchers are suggested to follow the merging and direct-joining workflow to avoid problems associated with low-quality data while profiling the microbial community structure.

Abstract Image

不要让宝贵的微生物组数据白白浪费:针对低质量成对末端扩增片段数据合并和直接连接测序读数的组合使用。
低质量测序数据的有害性要求我们改进用于分析微生物多样性的生物信息学工作流程。传统的合并方法在处理低质量扩增子数据时会丢失大量测序读数,因此需要采用其他方法。本研究提出了一种结合合并和直接连接的计算工作流程来处理低质量的扩增子数据,在这种流程中,缺乏重叠的成对末端读数被连接起来并与合并后的序列汇集在一起。所提出的计算策略与两种工作流程进行了比较:一种是合并成对末端读数的合并方法,另一种是连接读数的直接连接方法。结果表明,合并法产生的扩增子序列数量明显较少,限制了微生物组的推断,并掩盖了一些微生物关联。与其他工作流程相比,合并和直接连接策略的结合减少了扩增片段数据的损失,改善了分类学分类,更重要的是,减少了合并方法在分析低质量扩增片段数据时产生的误导性结果。模拟群落分析也支持上述发现。总之,建议研究人员在分析微生物群落结构时采用合并和直接连接工作流程,以避免低质量数据带来的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信