{"title":"Stroke triggers dynamic m6A reprogramming of cerebral circular RNAs","authors":"Suresh L. Mehta , Hadjer Namous , Raghu Vemuganti","doi":"10.1016/j.neuint.2024.105802","DOIUrl":null,"url":null,"abstract":"<div><p>We previously showed that stroke alters circular RNA (circRNA) expression profiles. Many circRNAs undergo epitranscriptomic modifications, particularly methylation of adenosine to form N<sup>6</sup>-methyladenosine (m<sup>6</sup>A). This modification significantly influences the circRNA metabolism and functionality. Hence, we currently evaluated if transient focal ischemia in adult C57BL/6J mice alters the m<sup>6</sup>A methylation of circRNAs. Changes in m<sup>6</sup>A were profiled in the peri-infarct cortex following immunoprecipitation coupled with microarrays. Correlation and gene ontology analyses were performed to understand the association of m<sup>6</sup>A changes with circRNA regulation and functional implications after stroke. Many circRNAs showed differential regulation (up or down) after stroke, and this change was highest at 24h of reperfusion. Notably, most circRNAs differentially regulated after stroke also exhibited temporal changes in m<sup>6</sup>A modification patterns. The majority of circRNAs that showed post-stroke differential m<sup>6</sup>A modifications were derived from protein-coding genes. Hyper-than hypomethylation of circRNAs was most prevalent after stroke. Gene ontology analysis of the host genes suggested that m<sup>6</sup>A-modified circRNAs might regulate functions such as synapse-related processes, indicating that m<sup>6</sup>A epitranscriptomic modification in circRNAs could potentially influence post-stroke synaptic pathophysiology.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"178 ","pages":"Article 105802"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018624001293","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We previously showed that stroke alters circular RNA (circRNA) expression profiles. Many circRNAs undergo epitranscriptomic modifications, particularly methylation of adenosine to form N6-methyladenosine (m6A). This modification significantly influences the circRNA metabolism and functionality. Hence, we currently evaluated if transient focal ischemia in adult C57BL/6J mice alters the m6A methylation of circRNAs. Changes in m6A were profiled in the peri-infarct cortex following immunoprecipitation coupled with microarrays. Correlation and gene ontology analyses were performed to understand the association of m6A changes with circRNA regulation and functional implications after stroke. Many circRNAs showed differential regulation (up or down) after stroke, and this change was highest at 24h of reperfusion. Notably, most circRNAs differentially regulated after stroke also exhibited temporal changes in m6A modification patterns. The majority of circRNAs that showed post-stroke differential m6A modifications were derived from protein-coding genes. Hyper-than hypomethylation of circRNAs was most prevalent after stroke. Gene ontology analysis of the host genes suggested that m6A-modified circRNAs might regulate functions such as synapse-related processes, indicating that m6A epitranscriptomic modification in circRNAs could potentially influence post-stroke synaptic pathophysiology.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.