Twin Boundaries-Induced Centrosymmetric Breaking of Hollow CaTiO3 Nanocuboids for Piezocatalytic Hydrogen Evolution

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-07-06 DOI:10.1002/smll.202402679
Hong Zhou, Jing Cao, Yehuan Ji, Mengyao Xia, Weifeng Yao
{"title":"Twin Boundaries-Induced Centrosymmetric Breaking of Hollow CaTiO3 Nanocuboids for Piezocatalytic Hydrogen Evolution","authors":"Hong Zhou,&nbsp;Jing Cao,&nbsp;Yehuan Ji,&nbsp;Mengyao Xia,&nbsp;Weifeng Yao","doi":"10.1002/smll.202402679","DOIUrl":null,"url":null,"abstract":"<p>Piezocatalysis, a transformative mechanochemical energy conversion technique, has received considerable attention over the past decade for its role in processes such as hydrogen evolution from water. Despite notable progress in the field, challenges remain, particularly in the areas of limited piezocatalysis efficiency and limited availability of materials requiring a non-centrosymmetric structure. Here, a pioneering contribution is presented by elucidating the piezocatalytic properties of hollow CaTiO<sub>3</sub> nanocuboids, a centrosymmetric material with a nominally nonpolar state. Remarkably, CaTiO<sub>3</sub> nanocuboids exhibit an impressive hydrogen production rate of 3.44 mmol g<sup>−1</sup> h<sup>−1</sup> under ultrasonic vibrations, surpassing the performance of the well-established piezocatalyst BaTiO<sub>3</sub> (2.23 mmol g<sup>−1</sup> h<sup>−1</sup>). In contrast, commercial CaTiO<sub>3</sub> nanoparticles do not exhibit piezocatalytic performance. The exceptional performance of hollow CaTiO<sub>3</sub> nanocuboids is attributed to the abundance presence of twin boundaries on the {110} facet within its crystal structure, which can impart significant polarization strength to CaTiO<sub>3</sub>. Extending the investigation to other centrosymmetric materials, such as SrZrO<sub>3</sub> and BaZrO<sub>3</sub>, the experimental results also demonstrate their commendable properties for piezocatalytic hydrogen production from water. This research underscores the significant potential of centrosymmetric materials in piezocatalysis.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 44","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202402679","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezocatalysis, a transformative mechanochemical energy conversion technique, has received considerable attention over the past decade for its role in processes such as hydrogen evolution from water. Despite notable progress in the field, challenges remain, particularly in the areas of limited piezocatalysis efficiency and limited availability of materials requiring a non-centrosymmetric structure. Here, a pioneering contribution is presented by elucidating the piezocatalytic properties of hollow CaTiO3 nanocuboids, a centrosymmetric material with a nominally nonpolar state. Remarkably, CaTiO3 nanocuboids exhibit an impressive hydrogen production rate of 3.44 mmol g−1 h−1 under ultrasonic vibrations, surpassing the performance of the well-established piezocatalyst BaTiO3 (2.23 mmol g−1 h−1). In contrast, commercial CaTiO3 nanoparticles do not exhibit piezocatalytic performance. The exceptional performance of hollow CaTiO3 nanocuboids is attributed to the abundance presence of twin boundaries on the {110} facet within its crystal structure, which can impart significant polarization strength to CaTiO3. Extending the investigation to other centrosymmetric materials, such as SrZrO3 and BaZrO3, the experimental results also demonstrate their commendable properties for piezocatalytic hydrogen production from water. This research underscores the significant potential of centrosymmetric materials in piezocatalysis.

Abstract Image

中空 CaTiO3 纳米立方体的双边界诱导的中心对称断裂,用于压电催化氢气发生。
压电催化是一种变革性的机械化学能量转换技术,在过去十年中因其在水制氢等过程中的作用而受到广泛关注。尽管该领域取得了显著进展,但挑战依然存在,特别是在压电催化效率有限和需要非中心对称结构的材料供应有限等方面。本文通过阐明空心 CaTiO3 纳米立方体的压催化特性做出了开创性的贡献,这种纳米立方体是一种具有名义上非极性状态的中心对称材料。值得注意的是,在超声波振动下,CaTiO3 纳米立方体表现出 3.44 mmol g-1 h-1 的惊人制氢率,超过了久负盛名的压催化剂 BaTiO3(2.23 mmol g-1 h-1)。相比之下,商品化的 CaTiO3 纳米粒子并不具有压催化性能。空心 CaTiO3 纳米立方体的优异性能归功于其晶体结构中{110}面上孪晶边界的丰富存在,这可以为 CaTiO3 带来显著的极化强度。将研究扩展到其他中心对称材料,如 SrZrO3 和 BaZrO3,实验结果也证明了它们在压电催化水制氢方面具有值得称道的特性。这项研究强调了中心对称材料在压催化方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
文献相关原料
公司名称
产品信息
阿拉丁
Potassium hydroxide (KOH)
阿拉丁
Sodium hydroxide (NaOH)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信