Dr. Ehsan Hamzehpoor, Farshid Effaty, Dr. Tristan H. Borchers, Dr. Robin S. Stein, Dr. Alexander Wahrhaftig-Lewis, Prof. Xavier Ottenwaelder, Prof. Tomislav Friščić, Prof. Dmytro F. Perepichka
{"title":"Mechanochemical Synthesis of Boroxine-linked Covalent Organic Frameworks","authors":"Dr. Ehsan Hamzehpoor, Farshid Effaty, Dr. Tristan H. Borchers, Dr. Robin S. Stein, Dr. Alexander Wahrhaftig-Lewis, Prof. Xavier Ottenwaelder, Prof. Tomislav Friščić, Prof. Dmytro F. Perepichka","doi":"10.1002/anie.202404539","DOIUrl":null,"url":null,"abstract":"<p>We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of <i>ca</i>. 2,500 m<sup>2</sup> g<sup>−1</sup>. Mechanochemistry enabled a>20-fold reduction in solvent use and ~100-fold reduction in reaction time compared with solvothermal methods, providing target COFs quantitatively with no additional work-up besides vacuum drying. Real-time Raman spectroscopy permitted the first quantitative kinetic analysis of COF mechanosynthesis, while transferring the reaction design to Resonant Acoustic Mixing (RAM) enabled synthesis of multi-gram amounts of the target COFs (tested up to 10 g).</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 51","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202404539","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202404539","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of ca. 2,500 m2 g−1. Mechanochemistry enabled a>20-fold reduction in solvent use and ~100-fold reduction in reaction time compared with solvothermal methods, providing target COFs quantitatively with no additional work-up besides vacuum drying. Real-time Raman spectroscopy permitted the first quantitative kinetic analysis of COF mechanosynthesis, while transferring the reaction design to Resonant Acoustic Mixing (RAM) enabled synthesis of multi-gram amounts of the target COFs (tested up to 10 g).
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.