Folding QQ-relations and transfer matrix eigenvalues: Towards a unified approach to Bethe ansatz for super spin chains

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Zengo Tsuboi
{"title":"Folding QQ-relations and transfer matrix eigenvalues: Towards a unified approach to Bethe ansatz for super spin chains","authors":"Zengo Tsuboi","doi":"10.1016/j.nuclphysb.2024.116607","DOIUrl":null,"url":null,"abstract":"<div><p>Extending the method proposed in <span>[1]</span>, we derive QQ-relations (functional relations among Baxter Q-functions) and T-functions (eigenvalues of transfer matrices) for fusion vertex models associated with the twisted quantum affine superalgebras <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>g</mi><mi>l</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>+</mo><mn>1</mn><mo>|</mo><mn>2</mn><mi>s</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span>, <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>g</mi><mi>l</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>|</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span>, <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>g</mi><mi>l</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>|</mo><mn>2</mn><mi>s</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span>, <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>o</mi><mi>s</mi><mi>p</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>|</mo><mn>2</mn><mi>s</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> and the untwisted quantum affine orthosymplectic superalgebras <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>o</mi><mi>s</mi><mi>p</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>+</mo><mn>1</mn><mo>|</mo><mn>2</mn><mi>s</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>o</mi><mi>s</mi><mi>p</mi><msup><mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>|</mo><mn>2</mn><mi>s</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span> (and their Yangian counterparts, <span><math><mi>Y</mi><mo>(</mo><mi>o</mi><mi>s</mi><mi>p</mi><mo>(</mo><mn>2</mn><mi>r</mi><mo>+</mo><mn>1</mn><mo>|</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>)</mo></math></span> and <span><math><mi>Y</mi><mo>(</mo><mi>o</mi><mi>s</mi><mi>p</mi><mo>(</mo><mn>2</mn><mi>r</mi><mo>|</mo><mn>2</mn><mi>s</mi><mo>)</mo><mo>)</mo></math></span>) as reductions (a kind of folding) of those associated with <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>g</mi><mi>l</mi><msup><mrow><mo>(</mo><mi>M</mi><mo>|</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span>. In particular, we reproduce previously proposed generating functions (difference operators) of the T-functions for the symmetric or anti-symmetric representations, and tableau sum expressions for more general representations for orthosymplectic superalgebras <span>[2]</span>, <span>[3]</span>, and obtain Wronskian-type expressions (analogues of Weyl-type character formulas) for them. T-functions for spinorial representations are related to reductions of those for asymptotic limits of typical representations of <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>g</mi><mi>l</mi><msup><mrow><mo>(</mo><mi>M</mi><mo>|</mo><mi>N</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324001731/pdfft?md5=8f0810bbf48438f7e9676c0e0e0c4b90&pid=1-s2.0-S0550321324001731-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324001731","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

Extending the method proposed in [1], we derive QQ-relations (functional relations among Baxter Q-functions) and T-functions (eigenvalues of transfer matrices) for fusion vertex models associated with the twisted quantum affine superalgebras Uq(gl(2r+1|2s)(2)), Uq(gl(2r|2s+1)(2)), Uq(gl(2r|2s)(2)), Uq(osp(2r|2s)(2)) and the untwisted quantum affine orthosymplectic superalgebras Uq(osp(2r+1|2s)(1)) and Uq(osp(2r|2s)(1)) (and their Yangian counterparts, Y(osp(2r+1|2s)) and Y(osp(2r|2s))) as reductions (a kind of folding) of those associated with Uq(gl(M|N)(1)). In particular, we reproduce previously proposed generating functions (difference operators) of the T-functions for the symmetric or anti-symmetric representations, and tableau sum expressions for more general representations for orthosymplectic superalgebras [2], [3], and obtain Wronskian-type expressions (analogues of Weyl-type character formulas) for them. T-functions for spinorial representations are related to reductions of those for asymptotic limits of typical representations of Uq(gl(M|N)(1)).

折叠QQ关系和转移矩阵特征值:迈向超级自旋链贝特方差的统一方法
我们扩展了[1]中提出的方法,推导出与扭曲量子仿射超代数 Uq(gl(2r+1|2s)(2))、Uq(gl(2r|2s+1)(2))相关的融合顶点模型的 QQ 关系(巴克斯特 Q 函数之间的函数关系)和 T 函数(转移矩阵的特征值)、Uq(gl(2r|2s)(2))、Uq(osp(2r|2s)(2))和非扭曲量子仿射正交超代数 Uq(osp(2r+1|2s)(1)) 和 Uq(osp(2r|2s)(1))(以及它们的扬子对应物、Y(osp(2r+1|2s))和 Y(osp(2r|2s)))作为与 Uq(gl(M|N)(1) 相关的还原(一种折叠)。特别是,我们重现了之前提出的对称或反对称表示的 T 函数的生成函数(差算子),以及正交超代数的更一般表示的 tableau 和表达式[2], [3],并得到了它们的 Wronskian 型表达式(Weyl 型特征公式的类似物)。自旋表示的 T 函数与 Uq(gl(M|N)(1) 典型表示的渐近极限的 T 函数的还原有关。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信