{"title":"The Progress and Prospect of calcium peroxide nanoparticles in antibacterial activity","authors":"Zhang Shasha , He Chuanchuan , Zhu Yawen","doi":"10.1016/j.colcom.2024.100793","DOIUrl":null,"url":null,"abstract":"<div><p>This review provides a comprehensive overview of the advancements and potential applications of calcium peroxide nanoparticles (CaO<sub>2</sub> NPs) in combating bacterial infections. With the rise of antibiotic resistance posing a significant global health threat, alternative antibacterial agents like CaO<sub>2</sub> NPs have garnered increasing attention. The review begins by discussing the synthesis and functionalization of CaO<sub>2</sub> NPs, highlighting recent developments in nanoparticle engineering techniques. Subsequently, it explores the intricate antibacterial mechanisms of CaO<sub>2</sub> NPs, emphasizing their ability to generate reactive oxygen species and disrupt bacterial biofilms. Evaluation of CaO<sub>2</sub> NPs' antibacterial efficacy against a broad spectrum of pathogens, coupled with discussions on potential applications in various fields including biomedical and environmental remediation, underscores their promising role as effective antibacterial agents. The review also addresses challenges such as nanoparticle stability and biocompatibility, and proposes future research directions to fully exploit the therapeutic potential of CaO<sub>2</sub> NPs. Overall, this review consolidates current knowledge on CaO<sub>2</sub> NPs and advocates for their continued exploration in combating bacterial infections.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"61 ","pages":"Article 100793"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000281/pdfft?md5=8c804f91ebc88ec1593a58ecfac1fd6f&pid=1-s2.0-S2215038224000281-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000281","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review provides a comprehensive overview of the advancements and potential applications of calcium peroxide nanoparticles (CaO2 NPs) in combating bacterial infections. With the rise of antibiotic resistance posing a significant global health threat, alternative antibacterial agents like CaO2 NPs have garnered increasing attention. The review begins by discussing the synthesis and functionalization of CaO2 NPs, highlighting recent developments in nanoparticle engineering techniques. Subsequently, it explores the intricate antibacterial mechanisms of CaO2 NPs, emphasizing their ability to generate reactive oxygen species and disrupt bacterial biofilms. Evaluation of CaO2 NPs' antibacterial efficacy against a broad spectrum of pathogens, coupled with discussions on potential applications in various fields including biomedical and environmental remediation, underscores their promising role as effective antibacterial agents. The review also addresses challenges such as nanoparticle stability and biocompatibility, and proposes future research directions to fully exploit the therapeutic potential of CaO2 NPs. Overall, this review consolidates current knowledge on CaO2 NPs and advocates for their continued exploration in combating bacterial infections.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.