Educational models for cognition: Methodology of modeling intellectual skills for intelligent tutoring systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Oleg Sychev
{"title":"Educational models for cognition: Methodology of modeling intellectual skills for intelligent tutoring systems","authors":"Oleg Sychev","doi":"10.1016/j.cogsys.2024.101261","DOIUrl":null,"url":null,"abstract":"<div><p>Automation of teaching people new skills requires modeling of human reasoning because human cognition involves active reasoning over the new subject domain to acquire skills that will later become automatic. The article presents Thought Process Trees — a language for modeling human reasoning that was created to facilitate the development of intelligent tutoring systems, which can perform the same reasoning that is expected of a student and find deficiencies in their line of thinking, providing explanatory messages and allowing them to learn from performance errors. The methodology of building trees which better reflect human learning is discussed, with examples of design choices during the modeling process and their consequences. The characteristics of educational modeling that impact building subject-domain models for intelligent tutoring systems are discussed. The trees were formalized and served as a basis for developing a framework for constructing intelligent tutoring systems. This significantly lowered the time required to build and debug a constraint-based subject-domain model. The framework has already been used to develop five intelligent tutoring systems and their prototypes and is being used to develop more of them.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172400055X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Automation of teaching people new skills requires modeling of human reasoning because human cognition involves active reasoning over the new subject domain to acquire skills that will later become automatic. The article presents Thought Process Trees — a language for modeling human reasoning that was created to facilitate the development of intelligent tutoring systems, which can perform the same reasoning that is expected of a student and find deficiencies in their line of thinking, providing explanatory messages and allowing them to learn from performance errors. The methodology of building trees which better reflect human learning is discussed, with examples of design choices during the modeling process and their consequences. The characteristics of educational modeling that impact building subject-domain models for intelligent tutoring systems are discussed. The trees were formalized and served as a basis for developing a framework for constructing intelligent tutoring systems. This significantly lowered the time required to build and debug a constraint-based subject-domain model. The framework has already been used to develop five intelligent tutoring systems and their prototypes and is being used to develop more of them.

Abstract Image

认知教育模型:为智能辅导系统建立智力技能模型的方法论
要实现新技能教学的自动化,需要对人类推理进行建模,因为人类的认知涉及对新的学科领域进行主动推理,以获得日后将自动掌握的技能。文章介绍了 "思维过程树"--一种模拟人类推理的语言,它的创建是为了促进智能辅导系统的开发,该系统可以执行与学生预期相同的推理,并发现他们思路中的不足,提供解释性信息,让他们从错误的表现中吸取教训。本文讨论了构建能更好地反映人类学习的树的方法,并举例说明了建模过程中的设计选择及其后果。还讨论了教育建模的特点对建立智能辅导系统学科领域模型的影响。这些树被正规化,并作为开发构建智能辅导系统框架的基础。这大大缩短了构建和调试基于约束的学科领域模型所需的时间。该框架已被用于开发五个智能辅导系统及其原型,目前正被用于开发更多的智能辅导系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信