Exploring magnetic space groups of Cr2N MXene and its connection to vibrational and electronic properties

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
M.C Barrero-Moreno , A.M. Garay-Tapia
{"title":"Exploring magnetic space groups of Cr2N MXene and its connection to vibrational and electronic properties","authors":"M.C Barrero-Moreno ,&nbsp;A.M. Garay-Tapia","doi":"10.1016/j.flatc.2024.100703","DOIUrl":null,"url":null,"abstract":"<div><p>The vibrational, electronic, and magnetic properties of two-dimensional <span><math><mrow><msub><mrow><mi>Cr</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi></mrow></math></span> MXene were investigated. Two crystal cells (hexagonal and monoclinic) were considered with their respective magnetic space groups. In the absence of experimental data to fine-tune the <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>eff</mi></mrow></msub></mrow></math></span> (Hubbard correction), we utilized cell parameters and magnetic moment as a reference window, derived from meta-GGA calculations performed with the SCAN functional. A value of <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>eff</mi></mrow></msub></mrow></math></span> (1.25 eV) was determined, which does not overestimate the lattice parameters and magnetic moment values. Phonon scattering was calculated, and the vibrational modes were indexed. According to the density of states, the observed splitting in the <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>g</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn><mi>g</mi></mrow></msub></mrow></math></span> orbitals, and the crystal field analysis, we deduce that chromium in the MXene <span><math><mrow><msub><mrow><mi>Cr</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi></mrow></math></span> predominantly adopts an octahedral coordination environment, a combination of octahedral and tetrahedral coordination results in the splitting of the <em>d</em> orbitals. Finally, using Monte Carlo simulation, the critical temperature (<span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>) for each space group with different functionals was obtained.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100703"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000977","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The vibrational, electronic, and magnetic properties of two-dimensional Cr2N MXene were investigated. Two crystal cells (hexagonal and monoclinic) were considered with their respective magnetic space groups. In the absence of experimental data to fine-tune the Ueff (Hubbard correction), we utilized cell parameters and magnetic moment as a reference window, derived from meta-GGA calculations performed with the SCAN functional. A value of Ueff (1.25 eV) was determined, which does not overestimate the lattice parameters and magnetic moment values. Phonon scattering was calculated, and the vibrational modes were indexed. According to the density of states, the observed splitting in the eg and t2g orbitals, and the crystal field analysis, we deduce that chromium in the MXene Cr2N predominantly adopts an octahedral coordination environment, a combination of octahedral and tetrahedral coordination results in the splitting of the d orbitals. Finally, using Monte Carlo simulation, the critical temperature (Tc) for each space group with different functionals was obtained.

Abstract Image

探索 Cr2N MXene 的磁空间群及其与振动和电子特性的联系
研究了二维 Cr2N MXene 的振动、电子和磁特性。我们考虑了两种晶胞(六方晶胞和单斜晶胞)及其各自的磁性空间群。在没有实验数据来微调 Ueff(哈伯德修正)的情况下,我们利用晶胞参数和磁矩作为参考窗口,这些参数和磁矩是通过 SCAN 函数进行的元 GGA 计算得出的。确定的 Ueff 值(1.25 eV)不会高估晶格参数和磁矩值。计算了声子散射,并对振动模式进行了索引。根据状态密度、观察到的 eg 和 t2g 轨道分裂以及晶场分析,我们推断出 MXene Cr2N 中的铬主要采用八面体配位环境,八面体和四面体配位的结合导致了 d 轨道的分裂。最后,通过蒙特卡罗模拟,得到了每个空间群不同官能团的临界温度 (Tc)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信