{"title":"Extracellular vesicles and the “six Rs” in radiotherapy","authors":"Isabel Ripoll-Viladomiu , Adriele Prina-Mello , Dania Movia , Laure Marignol","doi":"10.1016/j.ctrv.2024.102799","DOIUrl":null,"url":null,"abstract":"<div><p>Over half of patients with cancer receive radiation therapy during the course of their disease. Decades of radiobiological research have identified 6 parameters affecting the biological response to radiation referred to as the 6 “Rs”: Repair, Radiosensitivity, Repopulation, Redistribution, Reoxygenation, and Reactivation of the anti-tumour immune response. Extracellular Vesicles (EVs) are small membrane-bound particles whose multiple biological functions are increasingly documented. Here we discuss the evidence for a role of EVs in the orchestration of the response of cancer cells to radiotherapy. We highlight that EVs are involved in DNA repair mechanisms, modulation of cellular sensitivity to radiation, and facilitation of tumour repopulation. Moreover, EVs influence tumour reoxygenation dynamics, and play a pivotal role in fostering radioresistance. Last, we examine how EV-related strategies could be translated into novel strategies aimed at enhancing the efficacy of radiation therapy against cancer.</p></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0305737224001270/pdfft?md5=1fcd1093855636af22faf6a577d5ada4&pid=1-s2.0-S0305737224001270-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305737224001270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over half of patients with cancer receive radiation therapy during the course of their disease. Decades of radiobiological research have identified 6 parameters affecting the biological response to radiation referred to as the 6 “Rs”: Repair, Radiosensitivity, Repopulation, Redistribution, Reoxygenation, and Reactivation of the anti-tumour immune response. Extracellular Vesicles (EVs) are small membrane-bound particles whose multiple biological functions are increasingly documented. Here we discuss the evidence for a role of EVs in the orchestration of the response of cancer cells to radiotherapy. We highlight that EVs are involved in DNA repair mechanisms, modulation of cellular sensitivity to radiation, and facilitation of tumour repopulation. Moreover, EVs influence tumour reoxygenation dynamics, and play a pivotal role in fostering radioresistance. Last, we examine how EV-related strategies could be translated into novel strategies aimed at enhancing the efficacy of radiation therapy against cancer.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.