Noise and sensitivity analysis of the dielectric modulated reconfigurable SiNW-SBT for biosensor applications

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Anil Kumar, Sumit Kale
{"title":"Noise and sensitivity analysis of the dielectric modulated reconfigurable SiNW-SBT for biosensor applications","authors":"Anil Kumar,&nbsp;Sumit Kale","doi":"10.1016/j.micrna.2024.207923","DOIUrl":null,"url":null,"abstract":"<div><p>For the first time, we reported the noise and sensitivity analysis of the Dielectric Modulated Reconfigurable Silicon Nanowire-based Schottky Barrier Transistor (DMR SiNW-SBT) for biosensor applications. To validate the simulation, we present experimental calibration of the DMR SiNW-SBT biosensor. The biomolecules having different dielectric constants and charge densities are immobilized in the cavity region under the control gate. These biomolecules modulate the Schottky junction width at the source channel interface and enhance the drain current of the biosensor. The simulation results indicate that the proposed device <em>I</em><sub><em>ON</em></sub> and <em>V</em><sub><em>TH</em></sub> sensitivity improved by 54.65 % and 85.71 %, respectively, with the state-of-the-art biosensors. Noise analysis shows that the <em>NF</em><sub>min</sub> decreased by 190.32 % and offers a low source impedance of 70Ω, which minimizes signal loss and distortion. Additionally, we investigate the linearity parameters that outperformed the FET-based biosensors. The gm3 experiences a reduction of 123.21 %, while the VIP3 sees an increase of 7.87 % and the IIP3 shows a rise of 7.21 %. Furthermore, we have conducted device optimization by varying the cavity length and thickness. We also outline potential fabrication steps for the DMR SiNW-SBT biosensor. Thus, results show that the proposed biosensor emerges as a promising candidate for advanced biosensing applications with high sensitivity, enhanced linearity, and robust noise resilience.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"193 ","pages":"Article 207923"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, we reported the noise and sensitivity analysis of the Dielectric Modulated Reconfigurable Silicon Nanowire-based Schottky Barrier Transistor (DMR SiNW-SBT) for biosensor applications. To validate the simulation, we present experimental calibration of the DMR SiNW-SBT biosensor. The biomolecules having different dielectric constants and charge densities are immobilized in the cavity region under the control gate. These biomolecules modulate the Schottky junction width at the source channel interface and enhance the drain current of the biosensor. The simulation results indicate that the proposed device ION and VTH sensitivity improved by 54.65 % and 85.71 %, respectively, with the state-of-the-art biosensors. Noise analysis shows that the NFmin decreased by 190.32 % and offers a low source impedance of 70Ω, which minimizes signal loss and distortion. Additionally, we investigate the linearity parameters that outperformed the FET-based biosensors. The gm3 experiences a reduction of 123.21 %, while the VIP3 sees an increase of 7.87 % and the IIP3 shows a rise of 7.21 %. Furthermore, we have conducted device optimization by varying the cavity length and thickness. We also outline potential fabrication steps for the DMR SiNW-SBT biosensor. Thus, results show that the proposed biosensor emerges as a promising candidate for advanced biosensing applications with high sensitivity, enhanced linearity, and robust noise resilience.

用于生物传感器应用的介电调制可重构 SiNW-SBT 的噪声和灵敏度分析
我们首次报道了用于生物传感器应用的介质调制可重构硅纳米线肖特基势垒晶体管(DMR SiNW-SBT)的噪声和灵敏度分析。为了验证模拟结果,我们对 DMR SiNW-SBT 生物传感器进行了实验校准。具有不同介电常数和电荷密度的生物分子被固定在控制栅极下的空腔区域。这些生物分子可调节源通道接口的肖特基结宽度,并增强生物传感器的漏极电流。仿真结果表明,与最先进的生物传感器相比,拟议器件的 ION 和 VTH 灵敏度分别提高了 54.65% 和 85.71%。噪声分析表明,NFmin 降低了 190.32%,并提供了 70Ω 的低源阻抗,从而最大限度地减少了信号损失和失真。此外,我们还对线性参数进行了研究,结果表明其性能优于基于 FET 的生物传感器。gm3 下降了 123.21%,VIP3 上升了 7.87%,IIP3 上升了 7.21%。此外,我们还通过改变空腔长度和厚度对器件进行了优化。我们还概述了 DMR SiNW-SBT 生物传感器的潜在制造步骤。因此,研究结果表明,所提出的生物传感器具有灵敏度高、线性度强、抗噪声能力强等优点,是先进生物传感应用的理想候选器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信