Sums of squares in function fields over henselian discretely valued fields

Pub Date : 2024-06-27 DOI:10.1016/j.jpaa.2024.107756
Gonzalo Manzano-Flores
{"title":"Sums of squares in function fields over henselian discretely valued fields","authors":"Gonzalo Manzano-Flores","doi":"10.1016/j.jpaa.2024.107756","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>n</mi><mo>∈</mo><mi>N</mi></math></span> and let <em>K</em> be a field with a henselian discrete valuation of rank <em>n</em> with hereditarily euclidean residue field. Let <span><math><mi>F</mi><mo>/</mo><mi>K</mi></math></span> be a function field in one variable. It is known that every sum of squares is a sum of 3 squares. We determine the order of the group of nonzero sums of 3 squares modulo sums of 2 squares in <em>F</em> in terms of equivalence classes of certain discrete valuations of <em>F</em> of rank at most <em>n</em>. In the case of function fields of hyperelliptic curves of genus <em>g</em>, K.J. Becher and J. Van Geel showed that the order of this quotient group is bounded by <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. We show that this bound is optimal. Moreover, in the case where <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, we show that if <span><math><mi>F</mi><mo>/</mo><mi>K</mi></math></span> is a hyperelliptic function field such that the order of this quotient group is <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, then <em>F</em> is nonreal.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let nN and let K be a field with a henselian discrete valuation of rank n with hereditarily euclidean residue field. Let F/K be a function field in one variable. It is known that every sum of squares is a sum of 3 squares. We determine the order of the group of nonzero sums of 3 squares modulo sums of 2 squares in F in terms of equivalence classes of certain discrete valuations of F of rank at most n. In the case of function fields of hyperelliptic curves of genus g, K.J. Becher and J. Van Geel showed that the order of this quotient group is bounded by 2n(g+1). We show that this bound is optimal. Moreover, in the case where n=1, we show that if F/K is a hyperelliptic function field such that the order of this quotient group is 2g+1, then F is nonreal.

分享
查看原文
河西离散值域上的函数域中的平方和
设 n∈N,并设 K 是秩为 n 的具有赫氏离散估值的域,且具有欧几里得残差域。设 F/K 是单变量函数域。已知每个平方和都是 3 个平方的和。在属 g 的超椭圆曲线的函数场中,K.J. Becher 和 J. Van Geel 证明了这个商群的阶受 2n(g+1)约束。我们证明这一界限是最优的。此外,在 n=1 的情况下,我们证明了如果 F/K 是一个超椭圆函数域,使得这个商群的阶为 2g+1,那么 F 是非实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信