Analyzing material softening and strain localisation through embedded strong discontinuity approach within velocity-based beam formulation

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sudhanva Kusuma Chandrashekhara, Dejan Zupan
{"title":"Analyzing material softening and strain localisation through embedded strong discontinuity approach within velocity-based beam formulation","authors":"Sudhanva Kusuma Chandrashekhara,&nbsp;Dejan Zupan","doi":"10.1016/j.compstruc.2024.107464","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a novel computational formulation capable of solving the problem of material softening and the emerging localisation of strains in spatial frame-like structure, a common phenomenon for brittle heterogeneous materials. This study adopts the embedded strong discontinuity approach within our original velocity-based framework. The velocity-based formulation is thus enhanced with additional capabilities of detection of critical load level and critical cross-section and introduction of the jump-like variables at the level of velocities and angular velocities to enable more realistic description of strain localisation. A modified consistency condition is derived using the method of weighted residuals in complete accordance with the theoretical concept of strong discontinuity. One of the key advantages of the proposed method is its computational efficiency, which is preserved even after detecting cross-sectional singularities and handling post-critical localised strains. The numerical examples show the effectiveness and robustness of the proposed approach.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924001937/pdfft?md5=c8b854e0e6b8b7f1968ca429787ec759&pid=1-s2.0-S0045794924001937-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924001937","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel computational formulation capable of solving the problem of material softening and the emerging localisation of strains in spatial frame-like structure, a common phenomenon for brittle heterogeneous materials. This study adopts the embedded strong discontinuity approach within our original velocity-based framework. The velocity-based formulation is thus enhanced with additional capabilities of detection of critical load level and critical cross-section and introduction of the jump-like variables at the level of velocities and angular velocities to enable more realistic description of strain localisation. A modified consistency condition is derived using the method of weighted residuals in complete accordance with the theoretical concept of strong discontinuity. One of the key advantages of the proposed method is its computational efficiency, which is preserved even after detecting cross-sectional singularities and handling post-critical localised strains. The numerical examples show the effectiveness and robustness of the proposed approach.

通过基于速度的梁公式中的嵌入式强不连续性方法分析材料软化和应变定位
在本文中,我们提出了一种新的计算方法,能够解决材料软化和空间框架结构中出现的应变局部化问题,这是脆性异质材料的一种常见现象。本研究在原有的基于速度的框架内采用了嵌入式强不连续性方法。因此,基于速度的公式得到了增强,增加了临界载荷水平和临界截面的检测功能,并在速度和角速度水平上引入了类似跳跃的变量,从而能够更真实地描述应变局部化。根据强不连续性的理论概念,使用加权残差法推导出修正的一致性条件。所提方法的主要优点之一是计算效率高,即使在检测横截面奇异点和处理临界后局部应变时也能保持这种效率。数值实例显示了所提方法的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信