A robust H∞ fault-tolerant control approach for time-delay LPV systems with uncertain parameters and unknown disturbances

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Bing Liu, Zhongmei Li, Wenli Du
{"title":"A robust H∞ fault-tolerant control approach for time-delay LPV systems with uncertain parameters and unknown disturbances","authors":"Bing Liu,&nbsp;Zhongmei Li,&nbsp;Wenli Du","doi":"10.1016/j.ejcon.2024.101016","DOIUrl":null,"url":null,"abstract":"<div><p>The article proposes a <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> fault-tolerant control approach for a series of uncertain linear parameter-varying (LPV) time-delay models to obtain disturbance suppressions. Specifically, by applying the Lyapunov functions, a series of feedback controllers are provided to ensure the robust performance of LPV models with actuator faults. Meanwhile, a convex optimization strategy is developed for resolving optimization problems in the presence of bilinear matrix inequalities (BMIs), where the robustness conditions are improved to guarantee the stability of LPV model under uncertain factors. By resolving a class of linear matrix inequalities (LMIs), the gain matrices for LPV systems can be obtained. Furthermore, the less conservative conditions are developed and supported by strict theoretical derivation. Ultimately, the validity of proposed approach is confirmed by simulation analyses of truck–trailer systems.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"79 ","pages":"Article 101016"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000761","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The article proposes a H fault-tolerant control approach for a series of uncertain linear parameter-varying (LPV) time-delay models to obtain disturbance suppressions. Specifically, by applying the Lyapunov functions, a series of feedback controllers are provided to ensure the robust performance of LPV models with actuator faults. Meanwhile, a convex optimization strategy is developed for resolving optimization problems in the presence of bilinear matrix inequalities (BMIs), where the robustness conditions are improved to guarantee the stability of LPV model under uncertain factors. By resolving a class of linear matrix inequalities (LMIs), the gain matrices for LPV systems can be obtained. Furthermore, the less conservative conditions are developed and supported by strict theoretical derivation. Ultimately, the validity of proposed approach is confirmed by simulation analyses of truck–trailer systems.

针对具有不确定参数和未知扰动的时延 LPV 系统的鲁棒 H∞ 容错控制方法
文章提出了一种针对一系列不确定线性参数变化(LPV)时延模型的 H∞ 容错控制方法,以获得干扰抑制效果。具体而言,通过应用 Lyapunov 函数,提供了一系列反馈控制器,以确保 LPV 模型在执行器出现故障时的鲁棒性能。同时,还开发了一种凸优化策略,用于解决存在双线性矩阵不等式(BMI)时的优化问题,改进了鲁棒性条件,以保证 LPV 模型在不确定因素下的稳定性。通过解决一类线性矩阵不等式(LMI),可以得到 LPV 系统的增益矩阵。此外,通过严格的理论推导,还提出并支持了不太保守的条件。最后,通过对卡车拖车系统的仿真分析,证实了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信