{"title":"Fungicidal effect of gaseous ozone in malting barley: Implications for Fusarium infections and grain germination","authors":"Daniela Rodarte Sanchez , Birthe Møller Jespersen , Lars Holm Rasmussen , Mogens Larsen Andersen","doi":"10.1016/j.jcs.2024.103973","DOIUrl":null,"url":null,"abstract":"<div><p>Fungal infections pose a challenge in cereal grains, with <em>Fusarium</em> species, especially in malting barley, causing substantial economic losses and quality degradation. We investigated the effect of gaseous ozone on fungal deactivation and grain germination in spring malting barley, with focus on <em>Fusarium</em> spp. Five studies were performed: (1) ozone concentration (10–100 ppm) and exposure time (1–24 h) on high-moisture barley (19.8%); (2) ozone-treated barley stability over 120 days at 4 °C; (3) grain moisture content (12–20%); (4) relative humidity (23%, 54%, and 98%); and (5) temperature (13 °C, 20 °C, and 33 °C). Significant reductions in total fungal count and <em>Fusarium</em> spp. across all treatments were observed. Higher ozone concentrations and longer exposure times yielded greater reductions, with 100 ppm for 24 h achieving 99.2% and 98.2% reductions in total fungal count and <em>Fusarium</em> incidence, respectively. Grain germination exhibited a negative dose-dependent response but remained within recommended values. Ozone-treated barley preserved quality for 60 days in storage. Grain moisture content, relative humidity, and temperature did not significantly affect ozone's efficacy on fungi and grain germination. This study demonstrates ozone's efficacy against fungi while preserving barley germination, suggesting it as an eco-friendly fungicidal alternative.</p></div>","PeriodicalId":15285,"journal":{"name":"Journal of Cereal Science","volume":"118 ","pages":"Article 103973"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0733521024001310/pdfft?md5=c6348f2b6c5cd4b16f99df1bb27e2212&pid=1-s2.0-S0733521024001310-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cereal Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0733521024001310","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungal infections pose a challenge in cereal grains, with Fusarium species, especially in malting barley, causing substantial economic losses and quality degradation. We investigated the effect of gaseous ozone on fungal deactivation and grain germination in spring malting barley, with focus on Fusarium spp. Five studies were performed: (1) ozone concentration (10–100 ppm) and exposure time (1–24 h) on high-moisture barley (19.8%); (2) ozone-treated barley stability over 120 days at 4 °C; (3) grain moisture content (12–20%); (4) relative humidity (23%, 54%, and 98%); and (5) temperature (13 °C, 20 °C, and 33 °C). Significant reductions in total fungal count and Fusarium spp. across all treatments were observed. Higher ozone concentrations and longer exposure times yielded greater reductions, with 100 ppm for 24 h achieving 99.2% and 98.2% reductions in total fungal count and Fusarium incidence, respectively. Grain germination exhibited a negative dose-dependent response but remained within recommended values. Ozone-treated barley preserved quality for 60 days in storage. Grain moisture content, relative humidity, and temperature did not significantly affect ozone's efficacy on fungi and grain germination. This study demonstrates ozone's efficacy against fungi while preserving barley germination, suggesting it as an eco-friendly fungicidal alternative.
期刊介绍:
The Journal of Cereal Science was established in 1983 to provide an International forum for the publication of original research papers of high standing covering all aspects of cereal science related to the functional and nutritional quality of cereal grains (true cereals - members of the Poaceae family and starchy pseudocereals - members of the Amaranthaceae, Chenopodiaceae and Polygonaceae families) and their products, in relation to the cereals used. The journal also publishes concise and critical review articles appraising the status and future directions of specific areas of cereal science and short communications that present news of important advances in research. The journal aims at topicality and at providing comprehensive coverage of progress in the field.