Yujie Jin , Jing Guo , Hongda Cheng , Yi Li , Changyu Han
{"title":"Supertoughened biodegradable poly(L-lactic acid) by multiphase blends system: Crystallization, rheological and mechanical properties","authors":"Yujie Jin , Jing Guo , Hongda Cheng , Yi Li , Changyu Han","doi":"10.1016/j.tca.2024.179810","DOIUrl":null,"url":null,"abstract":"<div><p>To toughen brittle poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) (PHBH) and poly(vinyl acetate) (PVAc) were introduced into PLA matrix to prepared PLA/PHBH/PVAc ternary blends. PVAc was electively located in PLA matrix and refined phase morphology owing to better miscibility of PVAc with PLA than with PHBH. Increase in PVAc content decreased the crystallization rate and the crystallinity of PLA due to the dilution effect. More importantly, prominent enhancement of flexibility and toughness of PLA was obtained by the addition of PHBH and PVAc. Elongation at the break and impact strength of ternary blend with 10 wt% PVAc were 277 % and 326 % higher than that of neat PLA. Melt viscoelasticity of PLA was improved by incorporation of PHBH and PVAc. The combination of increased toughness and high melt viscoelasticity established in PLA biodegradable blends represent properties required in a wider range of applications.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001497","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To toughen brittle poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) and poly(vinyl acetate) (PVAc) were introduced into PLA matrix to prepared PLA/PHBH/PVAc ternary blends. PVAc was electively located in PLA matrix and refined phase morphology owing to better miscibility of PVAc with PLA than with PHBH. Increase in PVAc content decreased the crystallization rate and the crystallinity of PLA due to the dilution effect. More importantly, prominent enhancement of flexibility and toughness of PLA was obtained by the addition of PHBH and PVAc. Elongation at the break and impact strength of ternary blend with 10 wt% PVAc were 277 % and 326 % higher than that of neat PLA. Melt viscoelasticity of PLA was improved by incorporation of PHBH and PVAc. The combination of increased toughness and high melt viscoelasticity established in PLA biodegradable blends represent properties required in a wider range of applications.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes