Turán numbers of r-graphs on r + 1 vertices

IF 1.2 1区 数学 Q1 MATHEMATICS
Alexander Sidorenko
{"title":"Turán numbers of r-graphs on r + 1 vertices","authors":"Alexander Sidorenko","doi":"10.1016/j.jctb.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote an <em>r</em>-uniform hypergraph with <em>k</em> edges and <span><math><mi>r</mi><mo>+</mo><mn>1</mn></math></span> vertices, where <span><math><mi>k</mi><mo>≤</mo><mi>r</mi><mo>+</mo><mn>1</mn></math></span> (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>r</mi></mrow></mfrac></math></span> for all <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></msup></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>. We prove that <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>. In the case <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span>, we prove <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mn>1.7215</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mspace></mspace><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> as <span><math><mi>r</mi><mo>→</mo><mo>∞</mo></math></span>, and <span><math><mi>π</mi><mo>(</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> for all <em>r</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 150-160"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000558","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Hkr denote an r-uniform hypergraph with k edges and r+1 vertices, where kr+1 (it is easy to see that such a hypergraph is unique up to isomorphism). The known general bounds on its Turán density are π(Hkr)k2r for all k3, and π(H3r)21r for k=3. We prove that π(Hkr)(Cko(1))r(1+1k2) as r. In the case k=3, we prove π(H3r)(1.7215o(1))r2 as r, and π(H3r)r2 for all r.

r + 1 个顶点上 r 个图的图兰数
让 Hkr 表示具有 k 条边和 r+1 个顶点的 r-Uniform 超图,其中 k≤r+1 (很容易看出这样的超图在同构时是唯一的)。对于所有 k≥3 的图兰密度,已知的一般界限是 π(Hkr)≤k-2r,对于 k=3 的图兰密度,已知的一般界限是 π(H3r)≥21-r。我们证明当 r→∞ 时,π(Hkr)≥(Ck-o(1))r-(1+1k-2)。在 k=3 的情况下,我们证明π(H3r)≥(1.7215-o(1))r-2,因为 r→∞,并且对于所有 r,π(H3r)≥r-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信