Zihao Xu , Yinghao Meng , Zhen Yin , Bowen Liu , Youzhi Zhang , Mengmeng Lin
{"title":"Enhancing autonomous driving through intelligent navigation: A comprehensive improvement approach","authors":"Zihao Xu , Yinghao Meng , Zhen Yin , Bowen Liu , Youzhi Zhang , Mengmeng Lin","doi":"10.1016/j.jksuci.2024.102108","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an intelligent navigation system is developed to achieve accurate and rapid response to autonomous driving. The system is improved with three modules: target detection, distance measurement, and navigation obstacle avoidance. In the target detection module, the YOLOv7x-CM model is proposed to improve the efficiency and accuracy of target detection by introducing the CBAM attention mechanism and MPDioU loss function. In the obstacle distance measurement module, the concept of an off-center angle is introduced to optimize the traditional monocular distance measurement method. In the obstacle avoidance module, acceleration jump and steering speed constraints are introduced into the local path planning algorithm TEB, and the TEB-S algorithm is proposed. Finally, this paper evaluates the performance of the system modules using the KITTI dataset and the BDD100K dataset. It is demonstrated that YOLOv7x-CM improves the mAP @ 0.5 metrics by 5.3% and 6.8% on the KITTI dataset and the BDD100K dataset, respectively, and the FPS also increases by 35.4%. Secondly, for the optimized monocular detection method, the average relative distance error is reduced by 9 times. In addition, the proposed TEB-S algorithm has a shorter obstacle avoidance path and higher efficiency than the normal TEB algorithm.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824001976/pdfft?md5=3501a1d07cb3bae41fa97be3fa787122&pid=1-s2.0-S1319157824001976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824001976","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an intelligent navigation system is developed to achieve accurate and rapid response to autonomous driving. The system is improved with three modules: target detection, distance measurement, and navigation obstacle avoidance. In the target detection module, the YOLOv7x-CM model is proposed to improve the efficiency and accuracy of target detection by introducing the CBAM attention mechanism and MPDioU loss function. In the obstacle distance measurement module, the concept of an off-center angle is introduced to optimize the traditional monocular distance measurement method. In the obstacle avoidance module, acceleration jump and steering speed constraints are introduced into the local path planning algorithm TEB, and the TEB-S algorithm is proposed. Finally, this paper evaluates the performance of the system modules using the KITTI dataset and the BDD100K dataset. It is demonstrated that YOLOv7x-CM improves the mAP @ 0.5 metrics by 5.3% and 6.8% on the KITTI dataset and the BDD100K dataset, respectively, and the FPS also increases by 35.4%. Secondly, for the optimized monocular detection method, the average relative distance error is reduced by 9 times. In addition, the proposed TEB-S algorithm has a shorter obstacle avoidance path and higher efficiency than the normal TEB algorithm.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.