Synergistic effects of binary lithium salts on ion transport and dielectric relaxation in poly(methyl methacrylate) grafted natural rubber solid polymer electrolytes
Rawdah Whba , Mohd Sukor Su’ait , Kai Ling Chai , Azizan Ahmad
{"title":"Synergistic effects of binary lithium salts on ion transport and dielectric relaxation in poly(methyl methacrylate) grafted natural rubber solid polymer electrolytes","authors":"Rawdah Whba , Mohd Sukor Su’ait , Kai Ling Chai , Azizan Ahmad","doi":"10.1016/j.ssi.2024.116634","DOIUrl":null,"url":null,"abstract":"<div><p>A series of solid polymer electrolyte films were prepared using a casting solution with a polymer matrix comprising 49% poly(methyl methacrylate)-grafted natural rubber (MG49). These films incorporated binary lithium salts: lithium tetrafluoroborate (LiBF<sub>4</sub>) combined with either lithium trifluoromethanesulfonate (LiTf) or lithium iodide (LiI). These films' dielectric properties and ion association behavior were examined using potentiostatic electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) deconvolution. The key findings demonstrated that the increase in both the dielectric constant (<em>ɛ</em><sub>r</sub>) and dielectric loss (<em>ɛ</em><sub>i</sub>) was significantly correlated with enhanced ionic conductivity, reaching a value of 1.89 × 10<sup>−6</sup> S cm<sup>−1</sup>, which was attributed to enhanced ionic and segmental mobility. A peak observed in the <em>M</em><sub>i</sub> versus frequency plot confirmed the ionic conductor behavior. The (30:70) ratio of LiBF<sub>4</sub> to LiI exhibited the highest performance, with superior ionic conductivity, dielectric behavior, tangent loss, number of charge carriers, mobility, and diffusion coefficient, surpassing the performance of the single salt or LiBF<sub>4</sub> to LiTf. This indicates that the combination of LiBF<sub>4</sub> and LiI is particularly effective for applications requiring improved dielectric properties.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116634"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001826","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A series of solid polymer electrolyte films were prepared using a casting solution with a polymer matrix comprising 49% poly(methyl methacrylate)-grafted natural rubber (MG49). These films incorporated binary lithium salts: lithium tetrafluoroborate (LiBF4) combined with either lithium trifluoromethanesulfonate (LiTf) or lithium iodide (LiI). These films' dielectric properties and ion association behavior were examined using potentiostatic electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) deconvolution. The key findings demonstrated that the increase in both the dielectric constant (ɛr) and dielectric loss (ɛi) was significantly correlated with enhanced ionic conductivity, reaching a value of 1.89 × 10−6 S cm−1, which was attributed to enhanced ionic and segmental mobility. A peak observed in the Mi versus frequency plot confirmed the ionic conductor behavior. The (30:70) ratio of LiBF4 to LiI exhibited the highest performance, with superior ionic conductivity, dielectric behavior, tangent loss, number of charge carriers, mobility, and diffusion coefficient, surpassing the performance of the single salt or LiBF4 to LiTf. This indicates that the combination of LiBF4 and LiI is particularly effective for applications requiring improved dielectric properties.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.