Using ensemble machine learning and metaheuristic optimization for modelling the elastic modulus of geopolymer concrete

Emad Golafshani , Seyed Ali Eftekhar Afzali , Alireza A. Chiniforush , Tuan Ngo
{"title":"Using ensemble machine learning and metaheuristic optimization for modelling the elastic modulus of geopolymer concrete","authors":"Emad Golafshani ,&nbsp;Seyed Ali Eftekhar Afzali ,&nbsp;Alireza A. Chiniforush ,&nbsp;Tuan Ngo","doi":"10.1016/j.clema.2024.100258","DOIUrl":null,"url":null,"abstract":"<div><p>Geopolymer concrete emerges as a sustainable and durable alternative to conventional concrete, addressing its high carbon footprint and enhanced durability. The distinct properties of geopolymer concrete, governed by supplementary cementitious materials and alkaline activators, promise reduced environmental impact and improved structural resilience. However, its complex composition complicates the prediction of mechanical properties such as the elastic modulus, crucial for structural applications. This study introduces an innovative approach using the eXtreme Gradient Boosting (XGBoost) technique integrated with the multi-objective grey wolf optimizer to model the elastic modulus of geopolymer concrete. By dynamically selecting influential features and optimizing model accuracy, this methodology advances beyond traditional empirical models, which fail to capture the nonlinear interactions intrinsic to geopolymer concrete. Utilizing a comprehensive database gathered from extensive literature, 22 potential variables were examined that influence geopolymer concrete’s elastic modulus. After mitigating multicollinearity and optimizing hyperparameters via Bayesian optimization, six XGBoost models were developed with different combinations of input variables, revealing compressive strength and total water content as pivotal predictors. The findings illustrate the models’ precision, with the trade-off between prediction accuracy and model simplicity visualized through the relationship between the number of input variables and prediction error. The study culminates in a user-friendly graphical user interface that enables easy prediction of geopolymer concrete’s elastic modulus and fosters educational engagement. This interface, available online, underscores the practicality and accessibility of advanced machine learning predictions. Overall, this research not only provides a robust predictive framework for geopolymer concrete’s elastic modulus using optimized input variables but also enhances the understanding of its underlying determinants, contributing to the advancement of sustainable construction materials.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"13 ","pages":"Article 100258"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277239762400042X/pdfft?md5=6650c516d5072dd8dd70f4dc788bcb3e&pid=1-s2.0-S277239762400042X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277239762400042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Geopolymer concrete emerges as a sustainable and durable alternative to conventional concrete, addressing its high carbon footprint and enhanced durability. The distinct properties of geopolymer concrete, governed by supplementary cementitious materials and alkaline activators, promise reduced environmental impact and improved structural resilience. However, its complex composition complicates the prediction of mechanical properties such as the elastic modulus, crucial for structural applications. This study introduces an innovative approach using the eXtreme Gradient Boosting (XGBoost) technique integrated with the multi-objective grey wolf optimizer to model the elastic modulus of geopolymer concrete. By dynamically selecting influential features and optimizing model accuracy, this methodology advances beyond traditional empirical models, which fail to capture the nonlinear interactions intrinsic to geopolymer concrete. Utilizing a comprehensive database gathered from extensive literature, 22 potential variables were examined that influence geopolymer concrete’s elastic modulus. After mitigating multicollinearity and optimizing hyperparameters via Bayesian optimization, six XGBoost models were developed with different combinations of input variables, revealing compressive strength and total water content as pivotal predictors. The findings illustrate the models’ precision, with the trade-off between prediction accuracy and model simplicity visualized through the relationship between the number of input variables and prediction error. The study culminates in a user-friendly graphical user interface that enables easy prediction of geopolymer concrete’s elastic modulus and fosters educational engagement. This interface, available online, underscores the practicality and accessibility of advanced machine learning predictions. Overall, this research not only provides a robust predictive framework for geopolymer concrete’s elastic modulus using optimized input variables but also enhances the understanding of its underlying determinants, contributing to the advancement of sustainable construction materials.

利用集合机器学习和元启发式优化建立土工聚合物混凝土弹性模量模型
土工聚合物混凝土是传统混凝土的可持续耐用替代品,可解决高碳足迹问题并提高耐用性。土工聚合物混凝土的独特性能受辅助胶凝材料和碱性活化剂的制约,有望减少对环境的影响并提高结构的弹性。然而,其复杂的成分使得对结构应用至关重要的弹性模量等力学性能的预测变得复杂。本研究介绍了一种创新方法,即使用集成了多目标灰狼优化器的极梯度提升(XGBoost)技术来模拟土工聚合物混凝土的弹性模量。通过动态选择有影响力的特征并优化模型精度,该方法超越了传统的经验模型,因为传统模型无法捕捉到土工聚合物混凝土固有的非线性相互作用。利用从大量文献中收集的综合数据库,研究了影响土工聚合物混凝土弹性模量的 22 个潜在变量。在减轻多重共线性并通过贝叶斯优化法优化超参数后,利用不同的输入变量组合建立了六个 XGBoost 模型,发现抗压强度和总含水量是关键的预测因素。研究结果表明了模型的精确性,并通过输入变量数量与预测误差之间的关系直观地说明了预测准确性与模型简洁性之间的权衡。这项研究最终形成了一个用户友好型图形用户界面,可以轻松预测土工聚合物混凝土的弹性模量,并促进教育参与。该界面可在线使用,强调了先进机器学习预测的实用性和可访问性。总之,这项研究不仅利用优化的输入变量为土工聚合物混凝土的弹性模量提供了一个稳健的预测框架,而且加深了人们对其基本决定因素的理解,有助于推动可持续建筑材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信