Skew symplectic and orthogonal characters through lattice paths

IF 1 3区 数学 Q1 MATHEMATICS
Seamus P. Albion , Ilse Fischer , Hans Höngesberg , Florian Schreier-Aigner
{"title":"Skew symplectic and orthogonal characters through lattice paths","authors":"Seamus P. Albion ,&nbsp;Ilse Fischer ,&nbsp;Hans Höngesberg ,&nbsp;Florian Schreier-Aigner","doi":"10.1016/j.ejc.2024.104000","DOIUrl":null,"url":null,"abstract":"<div><p>The skew Schur functions admit many determinantal expressions. Chief among them are the (dual) Jacobi–Trudi formula and the Lascoux–Pragacz formula, the latter being a skew analogue of the Giambelli identity. Comparatively, the skew characters of the symplectic and orthogonal groups, also known as the skew symplectic and orthogonal Schur functions, have received less attention in this direction. We establish analogues of the dual Jacobi–Trudi and Lascoux–Pragacz formulae for these characters. Our approach is entirely combinatorial, being based on lattice path descriptions of the tableaux models of Koike and Terada. Ordinary Jacobi–Trudi formulae are then derived in an algebraic manner from their duals.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824000854/pdfft?md5=27fd60792f502dd428590e06520747af&pid=1-s2.0-S0195669824000854-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000854","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The skew Schur functions admit many determinantal expressions. Chief among them are the (dual) Jacobi–Trudi formula and the Lascoux–Pragacz formula, the latter being a skew analogue of the Giambelli identity. Comparatively, the skew characters of the symplectic and orthogonal groups, also known as the skew symplectic and orthogonal Schur functions, have received less attention in this direction. We establish analogues of the dual Jacobi–Trudi and Lascoux–Pragacz formulae for these characters. Our approach is entirely combinatorial, being based on lattice path descriptions of the tableaux models of Koike and Terada. Ordinary Jacobi–Trudi formulae are then derived in an algebraic manner from their duals.

通过晶格路径的斜交和正交特性
偏斜舒尔函数有许多行列式表达式。其中最主要的是雅各比-特鲁迪(对偶)公式和拉斯科-普拉加茨公式,后者是詹贝里特性的偏斜类比。相对而言,交映和正交群的偏斜特征,也称为偏斜交映和正交舒尔函数,在这方面受到的关注较少。我们为这些特征建立了雅各比-特鲁迪(Jacobi-Trudi)和拉斯库-普拉加茨(Lascoux-Pragacz)对偶公式的类似物。我们的方法完全是组合式的,基于小池和寺田的台面模型的晶格路径描述。然后以代数方式从它们的对偶式推导出普通雅各比-图迪公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信