Chiral ferroelectric nematic liquid crystals as materials for versatile laser devices

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
GIANT Pub Date : 2024-06-27 DOI:10.1016/j.giant.2024.100316
César L. Folcia , Josu Ortega , Teresa Sierra , Alejandro Martínez-Bueno , Jesús Etxebarria
{"title":"Chiral ferroelectric nematic liquid crystals as materials for versatile laser devices","authors":"César L. Folcia ,&nbsp;Josu Ortega ,&nbsp;Teresa Sierra ,&nbsp;Alejandro Martínez-Bueno ,&nbsp;Jesús Etxebarria","doi":"10.1016/j.giant.2024.100316","DOIUrl":null,"url":null,"abstract":"<div><p>We present a liquid-crystal laser device based on the chiral ferroelectric nematic phase (N<sub>F</sub>*). The laser medium is obtained by mixing a ferroelectric nematic material with a chiral agent and a small proportion of a fluorescent dye. Notably, in the N<sub>F</sub>* phase very low electric fields perpendicular to the helical axis are able to reorient the molecules, giving rise to a periodic structure whose director profile is not single harmonic but contains the contribution of various Fourier components. This feature induces the appearance of several photonic bandgaps whose spectral ranges depend on the field, which can be exploited to build tunable laser devices. Here we report the characterization of home-made N<sub>F</sub>* lasers that can be tunable under low electric fields and present laser action in two of the photonic bands of the material. The obtained results open a promising route for the design of new and more versatile liquid-crystal based lasers.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100316"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000808/pdfft?md5=b7406937c4dfe7cd08d6a120356145eb&pid=1-s2.0-S2666542524000808-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000808","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a liquid-crystal laser device based on the chiral ferroelectric nematic phase (NF*). The laser medium is obtained by mixing a ferroelectric nematic material with a chiral agent and a small proportion of a fluorescent dye. Notably, in the NF* phase very low electric fields perpendicular to the helical axis are able to reorient the molecules, giving rise to a periodic structure whose director profile is not single harmonic but contains the contribution of various Fourier components. This feature induces the appearance of several photonic bandgaps whose spectral ranges depend on the field, which can be exploited to build tunable laser devices. Here we report the characterization of home-made NF* lasers that can be tunable under low electric fields and present laser action in two of the photonic bands of the material. The obtained results open a promising route for the design of new and more versatile liquid-crystal based lasers.

Abstract Image

作为多功能激光设备材料的手性铁电向列液晶
我们介绍了一种基于手性铁电向列相 (NF*) 的液晶激光设备。这种激光介质是通过将铁电向列材料与手性剂和少量荧光染料混合而获得的。值得注意的是,在 NF* 相中,垂直于螺旋轴的极低电场能够使分子重新定向,从而产生一种周期性结构,这种结构的方向轮廓不是单次谐波,而是包含各种傅立叶分量。这一特征导致出现了多个光子带隙,其光谱范围取决于场,可用于制造可调谐激光设备。在此,我们报告了自制 NF* 激光器的特性,这种激光器可在低电场下进行调谐,并在材料的两个光子带中产生激光作用。所获得的结果为设计基于液晶的新型多功能激光器开辟了一条前景广阔的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信