Base on photothermal interfacial molecular transfer for efficient biodiesel catalysis via enzyme@cyclodextrin metal-organic frameworks loaded MXene

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Qi Ao, Lin Jiang, Ying Song, Xinglai Tong, Tuohao Jiang, Xiaoxiao Lv, Jun Tang
{"title":"Base on photothermal interfacial molecular transfer for efficient biodiesel catalysis via enzyme@cyclodextrin metal-organic frameworks loaded MXene","authors":"Qi Ao,&nbsp;Lin Jiang,&nbsp;Ying Song,&nbsp;Xinglai Tong,&nbsp;Tuohao Jiang,&nbsp;Xiaoxiao Lv,&nbsp;Jun Tang","doi":"10.1016/j.carbpol.2024.122454","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient, green and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Therefore, we construct a new strategy with photothermal interfacial molecular transfer for green and efficient biodiesel catalysis. We encapsulate <em>Candida albicans</em> lipase B (CalB) in a γ-cyclodextrin metal-organic framework (γ-CD-MOF) loading with Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> by in situ growth and electrostatic assembly. The γ-CD-MOF not only protects the fragile enzyme, but also enhances the catalytic performance through the synergistic effects of porous adsorption (MOF pore structure) and interfacial enrichment (cyclodextrins host-guest assembly structure) for accelerating substrate transfer (642.6 %). The CalB@γ-CD-MOF/MXene-i activity can be regulated up to 274.6 % by exposure to near-infrared (NIR). Importantly, CalB@γ-CD-MOF/MXene-i achieves 93.3 % biodiesel conversion under NIR and maintained 86.9 % activity after 6 cycles. Meanwhile, the MXene after the CalB@γ-CD-MOF/MXene catalytic cycle can be almost completely recovered. We verify the mechanism of high catalytic activity of γ-CD-MOF and rationalize the mechanism of CD molecular channel by DFT. Therefore, this highly selective enzyme catalytic platform offers new possibilities for green and efficient preparation of bioenergy.</p></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724006805","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient, green and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Therefore, we construct a new strategy with photothermal interfacial molecular transfer for green and efficient biodiesel catalysis. We encapsulate Candida albicans lipase B (CalB) in a γ-cyclodextrin metal-organic framework (γ-CD-MOF) loading with Ti3C2TX by in situ growth and electrostatic assembly. The γ-CD-MOF not only protects the fragile enzyme, but also enhances the catalytic performance through the synergistic effects of porous adsorption (MOF pore structure) and interfacial enrichment (cyclodextrins host-guest assembly structure) for accelerating substrate transfer (642.6 %). The CalB@γ-CD-MOF/MXene-i activity can be regulated up to 274.6 % by exposure to near-infrared (NIR). Importantly, CalB@γ-CD-MOF/MXene-i achieves 93.3 % biodiesel conversion under NIR and maintained 86.9 % activity after 6 cycles. Meanwhile, the MXene after the CalB@γ-CD-MOF/MXene catalytic cycle can be almost completely recovered. We verify the mechanism of high catalytic activity of γ-CD-MOF and rationalize the mechanism of CD molecular channel by DFT. Therefore, this highly selective enzyme catalytic platform offers new possibilities for green and efficient preparation of bioenergy.

Abstract Image

以光热界面分子转移为基础,通过酶@环糊精金属有机框架负载 MXene 实现高效生物柴油催化
高效、绿色、稳定的催化一直是工业生产过程中酶催化的核心理念。因此,我们构建了一种利用光热界面分子转移实现绿色高效生物柴油催化的新策略。我们通过原位生长和静电组装将白色念珠菌脂肪酶 B(CalB)封装在负载有 Ti3C2TX 的γ-环糊精金属有机框架(γ-CD-MOF)中。γ-CD-MOF不仅保护了脆弱的酶,还通过多孔吸附(MOF孔结构)和界面富集(环糊精主客体组装结构)的协同作用提高了催化性能,加速了底物的转移(642.6%)。通过暴露于近红外(NIR),CalB@γ-CD-MOF/MXene-i 的活性可调节至 274.6%。重要的是,CalB@γ-CD-MOF/MXene-i 在近红外条件下实现了 93.3 % 的生物柴油转化率,并在 6 个循环后保持了 86.9 % 的活性。同时,CalB@γ-CD-MOF/MXene 催化循环后的 MXene 几乎可以完全回收。我们验证了 γ-CD-MOF 高催化活性的机理,并通过 DFT 合理解释了 CD 分子通道的机理。因此,这种高选择性酶催化平台为绿色高效制备生物能源提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信