{"title":"A soluble model for synchronized rhythmic activity in ant colonies","authors":"Pedro M.M. da Silveira, José F. Fontanari","doi":"10.1016/j.mbs.2024.109245","DOIUrl":null,"url":null,"abstract":"<div><p>Synchronization is one of the most striking instances of collective behavior, occurring in many natural phenomena. For example, in some ant species, ants are inactive within the nest most of the time, but their bursts of activity are highly synchronized and involve the entire nest population. Here we revisit a simulation model that generates this synchronized rhythmic activity through autocatalytic behavior, i.e., active ants can activate inactive ants, followed by a period of rest. We derive a set of delay differential equations that provide an accurate description of the simulations for large ant colonies. Analysis of the fixed-point solutions, complemented by numerical integration of the equations, indicates the existence of stable limit-cycle solutions when the rest period is greater than a threshold and the event of spontaneous activation of inactive ants is very unlikely, so that most of the arousal of ants is done by active ants. Furthermore, we argue that the persistent oscillations observed in the simulations for colonies of finite size are due to resonant amplification of demographic noise.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001056","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronization is one of the most striking instances of collective behavior, occurring in many natural phenomena. For example, in some ant species, ants are inactive within the nest most of the time, but their bursts of activity are highly synchronized and involve the entire nest population. Here we revisit a simulation model that generates this synchronized rhythmic activity through autocatalytic behavior, i.e., active ants can activate inactive ants, followed by a period of rest. We derive a set of delay differential equations that provide an accurate description of the simulations for large ant colonies. Analysis of the fixed-point solutions, complemented by numerical integration of the equations, indicates the existence of stable limit-cycle solutions when the rest period is greater than a threshold and the event of spontaneous activation of inactive ants is very unlikely, so that most of the arousal of ants is done by active ants. Furthermore, we argue that the persistent oscillations observed in the simulations for colonies of finite size are due to resonant amplification of demographic noise.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.