Stabilizing Ti3C2Tx MXene flakes in air by removing confined water.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hui Fang, Anupma Thakur, Amirhossein Zahmatkeshsaredorahi, Zhenyao Fang, Vahid Rad, Ahmad A Shamsabadi, Claudia Pereyra, Masoud Soroush, Andrew M Rappe, Xiaoji G Xu, Babak Anasori, Zahra Fakhraai
{"title":"Stabilizing Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene flakes in air by removing confined water.","authors":"Hui Fang, Anupma Thakur, Amirhossein Zahmatkeshsaredorahi, Zhenyao Fang, Vahid Rad, Ahmad A Shamsabadi, Claudia Pereyra, Masoud Soroush, Andrew M Rappe, Xiaoji G Xu, Babak Anasori, Zahra Fakhraai","doi":"10.1073/pnas.2400084121","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 28","pages":"e2400084121"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2400084121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.

通过去除密闭水分稳定空气中的 Ti3C2Tx MXene 薄片。
由于具有可调的表面化学性质和金属导电性,二氧化二烯类化合物在各种应用领域都显示出了潜力。然而,高温会加速 MXene 薄膜在空气中的氧化。了解 MXene 在高温下氧化的机理对于提高它们在高温应用中的热稳定性至关重要。在这里,我们证明了 Ti[式:见正文]C[式:见正文]T[式:见正文] MXene 单薄片在高达 600[式:见正文]摄氏度的空气中具有优异的热稳定性,而多薄片在 300[式:见正文]摄氏度的空气中很容易氧化。密度泛函理论计算表明,Ti[式:见正文]C[式:见正文]T[式:见正文]薄片之间的封闭水具有比表面水更高的去除能,因此可以持续到更高的温度,从而导致氧化。我们证明,封闭水的数量与堆叠薄片的氧化程度相关。将 Ti[式:见正文]C[式:见正文]T[式:见正文]薄膜在 600[式:见正文]摄氏度下真空退火可完全去除封闭水,从而大幅提高多薄片薄膜的稳定性(在空气中可承受 600[式:见正文]摄氏度)。这些发现从根本上揭示了封闭水的动力学及其在 Ti[式:见正文]C[式:见正文]T[式:见正文]氧化中的作用。这项工作使稳定的单薄片 MXenes 得以在高温应用中使用,并为多薄片薄膜的适当真空退火以提高其稳定性提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信