{"title":"Bilirubin oxidase expression and activity enhancement from Myrothecium verrucaria in Aspergillus species","authors":"","doi":"10.1016/j.jbiosc.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>We constructed a new <span><span>Aspergillus</span></span><span> expression vector<span><span> (pSENSU2512nid) under the control of the enolase promoter with 12 </span>tandem repeats of </span></span><em>cis</em><span>-acting elements (region III) and the heat shock protein 12 (</span><em>Hsp12</em><span><span><span>) 5′ untranslated region (UTR). </span>Bilirubin </span>oxidase (EC: 1.3.3.5) from </span><span><span>Myrothecium</span><em> verrucaria,</em></span><span><span> which catalyzes the oxidation<span> of bilirubin to </span></span>biliverdin, was overexpressed in </span><span><span>Aspergillus oryzae</span></span> and <em>A</em>. <em>niger</em><span>. The productivity was estimated to be approximately 1.2 g/L in the culture broth, which was approximately 6-fold higher than that of recombinant bilirubin oxidase (BOD) expressed in </span><span><span>Pichia pastoris</span></span> (<span><em>Komagataella</em><em> phaffii</em></span><span><span>). BOD was purified using hydrophobic interaction chromatography, followed by </span>ion exchange chromatography. The specific activity of the purified BOD against 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate was 57.6 U/mg and 66.4 U/mg for </span><em>A. oryzae</em> and <em>A. niger</em>, respectively. <span>l</span>-Ascorbic acid (4 mM) addition and storage under deoxygenated conditions for 3–7 d increased the specific activity of these <span><em>Aspergillus</em></span><span>-expressed BODs approximately 2.3-fold (154.1 U/mg). The BOD specific activity was enhanced by incubation at higher temperature (30–50 °C). Further characterization of the enzyme<span> catalytic efficiency revealed that the </span></span><em>K</em><sub>m</sub> value remained unchanged, whereas the <em>k</em><sub>cat</sub> value improved 3-fold. In conclusion, this high-level of BOD expression meets the requirements for industrial-level production. Additionally, we identified an effective method to enhance the low specific activity during expression, making it advantageous for industrial applications.</p></div>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":"138 3","pages":"Pages 212-217"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389172324001658","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We constructed a new Aspergillus expression vector (pSENSU2512nid) under the control of the enolase promoter with 12 tandem repeats of cis-acting elements (region III) and the heat shock protein 12 (Hsp12) 5′ untranslated region (UTR). Bilirubin oxidase (EC: 1.3.3.5) from Myrothecium verrucaria, which catalyzes the oxidation of bilirubin to biliverdin, was overexpressed in Aspergillus oryzae and A. niger. The productivity was estimated to be approximately 1.2 g/L in the culture broth, which was approximately 6-fold higher than that of recombinant bilirubin oxidase (BOD) expressed in Pichia pastoris (Komagataella phaffii). BOD was purified using hydrophobic interaction chromatography, followed by ion exchange chromatography. The specific activity of the purified BOD against 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate was 57.6 U/mg and 66.4 U/mg for A. oryzae and A. niger, respectively. l-Ascorbic acid (4 mM) addition and storage under deoxygenated conditions for 3–7 d increased the specific activity of these Aspergillus-expressed BODs approximately 2.3-fold (154.1 U/mg). The BOD specific activity was enhanced by incubation at higher temperature (30–50 °C). Further characterization of the enzyme catalytic efficiency revealed that the Km value remained unchanged, whereas the kcat value improved 3-fold. In conclusion, this high-level of BOD expression meets the requirements for industrial-level production. Additionally, we identified an effective method to enhance the low specific activity during expression, making it advantageous for industrial applications.
期刊介绍:
The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.